idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.01.2021 20:00

Spermien auf dem richtigen Weg

Katrin Boes Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Zellbiologie und Genetik

    Forscher finden einen neuen Mechanismus der männlichen Unfruchtbarkeit

    Ein wesentlicher Bestandteil aller eukaryotischen Zellen ist das Zytoskelett. Mikrotubuli, winzige Röhrchen, die aus einem Protein namens Tubulin bestehen, sind Teil dieses Zellskeletts. Zilien und Geißeln, antennenartige Strukturen, die aus den meisten Zellen unseres Körpers herausragen, enthalten viele Mikrotubuli. Ein Beispiel für eine Geißel ist der Spermienschwanz, der für die männliche Fruchtbarkeit und damit für die sexuelle Fortpflanzung unerlässlich ist. Die Geißel muss in einer sehr exakten und koordinierten Weise vorwärts schlagen, um das Fortbewegen der Spermien zu ermöglichen. Ist dies nicht der Fall, kann dies zu männlicher Unfruchtbarkeit führen. Forscher des Institut Curie in Paris, des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden, des Forschungszentrum caesar in Bonn gemeinsam mit der Universität Bonn, des Institut Cochin in Paris und des Human Technopole in Mailand zeigen nun, dass eine bestimmte enzymatische Veränderung des Proteins Tubulin, die sogenannte Glycylierung, essenziell ist, damit die Spermien in einer geraden Linie schwimmen. Diese Ergebnisse lassen vermuten, dass eine Störung dieser Veränderung einigen Fällen von männlicher Unfruchtbarkeit beim Menschen zugrunde liegen könnte.

    Die Zellen in unserem Körper nutzen das Erbgut, um daraus Baupläne mit Anweisungen zum Bau von Strukturen und molekularen Maschinen zu erhalten. Diese Maschinen sind sogenannte Proteine. Aber das ist noch nicht alles: Proteine können durch andere Proteine, sogenannte Enzyme, verändert werden. Dass es solche Veränderungen gibt, ist schon lange bekannt, doch erstaunlicherweise ist ihre Funktion in vielen Fällen unbekannt. So weiß man beispielsweise nicht, welche Rolle solche Veränderungen beim Protein Tubulin spielen. Tubulin bildet Mikrotubuli, lange Filamente, mit denen Gerüste in Zellen gebaut werden. Obwohl sich Mikrotubuli in allen Zellen unseres Organismus ähneln, übernehmen sie eine Vielzahl unterschiedlicher Funktionen. Eine sehr spezialisierte Funktion von Mikrotubuli findet sich im Spermienschwanz oder Flagellum. Die Geißeln der Spermien sind für die männliche Fruchtbarkeit und damit für die sexuelle Fortpflanzung essenziell. Sie müssen sehr präzise und koordiniert umher schlagen, um es den Spermazellen zu ermöglichen, schwimmend voranzukommen. Wenn dies nicht gelingt, kann das zu männlicher Unfruchtbarkeit führen. Damit die Spermien in gerader Linie schwimmen können, ist die Veränderung des Proteins Tubulin durch Enzyme notwendig. Eine dieser Modifikationen wird Glycylierung genannt und zählt zu den bislang am wenigsten erforschten Veränderungen von Tubulin.

    Wissenschaftler am Institut Curie in Paris, dem MPI-CBG in Dresden und dem Forschungszentrum caesar in Bonn untersuchten gemeinsam mit der Universität Bonn, dem Institut Cochin in Paris und der Human Technopole in Mailand die Glycylierung genauer. Sie fanden heraus, dass beim Fehlen der Tubulin-Modifikation die Bewegungsabläufe der Geißeln gestört sind. Das führt dazu, dass die Spermien meist im Kreis schwimmen. Der Erstautor der Studie, Sudarshan Gadadhar vom Institut Curie, erklärt: „Der Kern der Spermiengeißel besteht aus Mikrotubuli, zusammen mit Zehntausenden von winzigen molekularen Motoren, genannt Dyneine, die es ermöglichen, diese Mikrotubuli rhythmisch zu biegen, um Wellen für die Bewegung und Steuerung zu erzeugen. Die Aktivität dieser Dynein-Motorproteine muss exakt koordiniert sein. Wenn die Glycylierung nicht stattfand, koordinierten sich die Motorproteine untereinander nicht und wir beobachteten, wie die Spermien plötzlich im Kreis schwammen.“

    Um dies herauszufinden, arbeiteten die Autoren der Studie mit einer speziellen Art Maus, der die genetischen Baupläne für die Enzyme fehlen, die Mikrotubuli glycylieren. „Wir konnten funktionelle Defekte an Spermien von Mäusen beobachten, denen die Glycylierung fehlte, was zu einer Verminderung der Fruchtbarkeit führte. Da Mäuse für ihre hohe Fruchtbarkeit bekannt sind, könnte ein ähnlicher Defekt beim Menschen zu männlicher Sterilität führen“, so Carsten Janke vom Institut Curie und einer der Koordinatoren der Studie. Um herauszufinden, warum das Fehlen der Glycylierung zu einer gestörten Bewegung der Spermien und damit zu Unfruchtbarkeit führt, verwendete das Team Kryo-Elektronenmikroskopie, um die molekulare Struktur des Flagellums und seiner molekularen Motoren sichtbar zu machen. Die Analyse der mutierten Spermiengeißeln ergab, dass die Geißeln zwar korrekt aufgebaut waren, die Mutation aber die koordinierte Aktivität der axonalen Dyneine – der Motoren, die das Schlagen der Geißel antreiben ¬– beeinträchtigte. Dies erklärt, warum Spermazellen in ihrer Schwimmbewegung beeinträchtigt sind.

    Warum ist diese Entdeckung so wichtig? Die anderen Koordinatoren der Studie, Gaia Pigino vom MPI-CBG und der Human Technopole, und Luis Alvarez vom Forschungszentrum caesar, fassen zusammen: „Diese Studie zeigt, wie wichtig die Glycylierung für die Steuerung der Dynein-Motoren des Flagellums ist. Sie ist ein Paradebeispiel dafür, wie Mikrotubuli-Modifikationen die Funktion anderer Proteine in Zellen direkt beeinflussen. Unsere Ergebnisse liefern den direkten Beweis, dass Mikrotubuli eine aktive Rolle bei der Regulierung grundlegender biologischer Prozesse spielen, ermöglicht durch einen Code von Tubulin-Modifikationen. Zudem zeigt die Studie einen neuen Mechanismus, der zu männlicher Unfruchtbarkeit führen kann. Da die Spermiengeißeln nur eine von vielen Zilien-Arten in unserem Körper sind, denken wir, dass eine ähnliche Tubulin-kodierte Regulation bei verschiedenen Zilien-bezogenen Funktionen wichtig ist. Daher ermöglicht unsere Arbeit ein tieferes Verständnis verschiedener Krankheiten, wie Entwicklungsstörungen, Krebs, Nierenerkrankungen oder Atem- und Sehstörungen.“

    ------

    Über das Institut Curie
    Das Institut Curie, Frankreichs führendes Krebszentrum, kombiniert ein international anerkanntes Forschungszentrum mit einer hochmodernen Klinikgruppe, die alle Arten von Krebs behandelt, auch die seltensten. Das 1909 von Marie Curie gegründete Institut Curie beschäftigt 3.600 Forscher, Ärzte und medizinisches Fachpersonal an drei Standorten (Paris, Saint-Cloud und Orsay), die an drei Missionen arbeiten: Behandlung, Forschung und Lehre. Als private Stiftung mit Gemeinnützigkeitsstatus ist das Institut Curie berechtigt, Spenden und Vermächtnisse entgegenzunehmen. Dank der Unterstützung seiner Spender ist es in der Lage, Entdeckungen schneller zu machen und so die Behandlungen und die Lebensqualität der Patienten zu verbessern.

    Über das MPI-CBG
    Das Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden ist eines von über 80 Instituten der Max-Planck-Gesellschaft, einer unabhängigen gemeinnützigen Organisation in Deutschland. 550 Menschen aus 50 Ländern aus den verschiedensten Disziplinen arbeiten am MPI-CBG und lassen sich von ihrem Forscherdrang antreiben, um die Frage zu klären: Wie organisieren sich Zellen zu Geweben?

    Über das Forschungszentrum caesar
    caesar ist ein mit der Max-Planck-Gesellschaft assoziiertes Forschungsinstitut für Neuroethologie. Hier untersuchen wir, wie aus der kollektiven Aktivität der Vielzahl miteinander vernetzter Neuronen im Gehirn tierisches Verhalten in seiner ganzen Bandbreite entsteht. Unsere Forschung ist interdisziplinär und findet auf verschiedensten Größenebenen statt.

    Über Human Technopole
    Human Technopole (HT) ist Italiens neues Institut für Biowissenschaften mit Sitz im Herzen von MIND (Milano Innovation District), dem Gebiet, in dem die Mailänder EXPO 2015 stattfand. Die Mission von HT ist es, die Gesundheit und das Wohl der Menschen zu verbessern, indem es: Pionierforschung in den Biowissenschaften betreibt, die darauf abzielt, neue Ansätze in der präventiven und personalisierten Medizin zu entwickeln; wissenschaftliche Dienstleistungen und Einrichtungen einrichtet und betreibt, die externen Nutzern zur Verfügung gestellt werden, um auf die Bedürfnisse der wissenschaftlichen Gemeinschaft zu reagieren; die nächste Generation von Wissenschaftlern ausbildet; Innovation und Fortschritt durch Technologietransfer fördert. Sobald das Institut voll funktionsfähig ist, wird es über 1.000 Wissenschaftler aus der ganzen Welt beschäftigen.


    Wissenschaftliche Ansprechpartner:

    Dr. Carsten Janke
    Carsten.janke@curie.fr
    Institut Curie, PSL Research University, CNRS UMR3348,
    F-91405 Orsay, France

    Dr. Gaia Pigino
    pigino@mpi-cbg.de
    Max Planck Institute of Molecular Cell Biology and Genetics,
    D-01307 Dresden, Germany
    Human Technopole,
    I-20157 Milan, Italy

    Dr. Luis Alvarez
    luis.alvarez@caesar.de
    Center of Advanced European Studies and Research,
    D-53175 Bonn, Germany


    Originalpublikation:

    Sudarshan Gadadhar, Gonzalo Alvarez Viar, Jan Niklas Hansen, An Gong, Aleksandr Kostarev,
    Côme Ialy-Radio, Sophie Leboucher, Marjorie Whitfield, Ahmed Ziyyat, Aminata Touré,
    Luis Alvarez, Gaia Pigino, Carsten Janke: “Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility”, Science, 7. Januar 2021. DOI: 10.1126/science.abd4914


    Bilder

    Computergestützte Analyse lichtmikroskopischer Daten, die den linearen Schwimmweg eines normalen Spermas (oben) & die abnormen kreisförmigen und diagonalen Schwimmwege der mutierten Spermien (Mitte und unten) zeigen, denen die Tubulin-Glycylierung fehlt.
    Computergestützte Analyse lichtmikroskopischer Daten, die den linearen Schwimmweg eines normalen Spe ...

    Gadadhar et al. / Science 2021


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).