idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.02.2021 10:53

Kombi-Technik mit Diamant-Sonde ermöglicht Abbildung magnetischer Wirbelstrukturen auf der Nanoskala

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Magnetometrie auf Basis von Farbzentren in Diamant und magnetooptische Bildgebung ergänzen sich – Fortschritt in Richtung künftiger Datenspeicher

    Das genaue Verständnis von magnetischen Strukturen ist ein Herzstück der Festkörperphysik. Auf dem Gebiet werden zurzeit große Forschungsanstrengungen unternommen, um in Zukunft winzige magnetische Strukturen als Informationsträger in der Datenverarbeitung nutzen zu können. Physiker der Johannes Gutenberg-Universität Mainz (JGU) und des Helmholtz-Instituts Mainz (HIM) haben nun eine neue Methode zur Untersuchung magnetischer Strukturen vorgestellt, bei der zwei Techniken kombiniert werden. Damit konnten sowohl die Magnetisierung der Probe als auch ihr Magnetfeld gemessen und abgebildet werden. An dem Projekt waren Atomphysiker aus der Arbeitsgruppe von Prof. Dr. Dmitry Budker und die Gruppe der experimentellen Festkörperphysiker um Prof. Dr. Mathias Kläui beteiligt. Die Ergebnisse wurden in dem Fachjournal Physical Review Applied publiziert.

    „Wir haben in dieser Arbeit zwei Quantensensing-Techniken kombiniert, die bisher noch nicht gemeinsam auf eine Probe angewendet wurden,“, erklärt Till Lenz, Erstautor der Veröffentlichung und Doktorand in der AG Budker. Eine bekannte Methode der Festkörperphysik nutzt den magnetooptischen Kerr-Effekt, um magnetische Domänen abzubilden und die Magnetisierung zu ermitteln. „Aber dadurch erhalten wir nur beschränkte Informationen“, so Lenz. Daher erfolgte die Kombination mit einem Magnetometrie-Verfahren auf Basis von Farbzentren in Diamant, um auch das Magnetfeld erfassen zu können. „Wir hoffen, dass wir dadurch neue Erkenntnisse über Festkörperphysik und ferromagnetische Strukturen herausfinden werden“, sagt Georgios Chatzidrosos, ebenfalls Doktorand in der Budker-Arbeitsgruppe. Mathias Kläui freut sich über die neuen Messmöglichkeiten: „Die Nutzung von Diamant-Sonden ermöglicht eine Sensitivität, die uns ganz neue Messungen eröffnet.“

    Neues Kombi-Messverfahren bei breitem Spektrum von Umgebungsbedingungen einsetzbar

    Diamant ist nicht nur als Schmuckstein bekannt, sondern wird auch für Werkzeuge zum Schneiden und Schleifen verwendet. Ein besonderer Defekt im Kristallgitter verleiht Diamant zudem Eigenschaften, die für die Untersuchung magnetischer Strukturen nutzbar sind. Diese Farbzentren, auch als Stickstoff-Fehlstellen-Zentren bezeichnet, sind kleine Abweichungen von dem reinen Kohlenstoffgitter des Diamanten. Die Stickstoff-Fehlstellen-Zentren nutzt die Arbeitsgruppe von Dmitry Budker als Messsonde für magnetische Phänomene.

    Das Prinzip hat sich als ein vielseitig einsetzbares, hochsensitives Instrument für die nichtinvasive Untersuchung etabliert: Magnetometer auf Diamantbasis funktionieren bei sehr tiefen Temperaturen und ebenso über Raumtemperatur hinaus sowie bei kleinsten Entfernungen zwischen Probe und Sonde von nur wenigen Nanometern. „Wir haben eine dünne Lage von Stickstoff-Fehlstellen im Diamantkristall und können damit die magnetische Struktur abbilden und Fotos von den Magnetfeldern machen“, beschreibt Dr. Arne Wickenbrock aus der Budker-Arbeitsgruppe das Verfahren. „Damit können wir die magnetooptischen Möglichkeiten ergänzen und erweitern, indem alle Komponenten eines Magnetfelds abgebildet werden“, bemerkt Co-Autor Dr. Lykourgos Bougas.

    Unterstützung für Mainzer Profilbereich TopDyn

    „Die Sonde auf Basis von Farbzentren in Diamant ist wesentlich sensitiver als konventionelle Methoden und liefert uns extrem gute Ergebnisse. Wir stellen dazu interessante Proben bereit, was einzigartige Kooperationsmöglichkeiten ergibt“, beschreibt Mathias Kläui den Austausch zwischen den beiden Arbeitsgruppen. „In Kombination ermöglichen unsere beiden komplementären Messmethoden die komplette Rekonstruktion der magnetischen Eigenschaften der Probe“, so der Experimentalphysiker. Die jetzt veröffentlichte Arbeit ist durch eine Kooperation im Rahmen des Profilbereiches TopDyn – Dynamics and Topology entstanden, der vom Land Rheinland-Pfalz gefördert wird. Außerdem ist die Arbeit Teil des Projektes „3D MAGiC“, das in Kooperation mit dem Forschungszentrum Jülich und der Radboud University im niederländischen Nimwegen erfolgt und mit einem ERC Synergy Grant ausgestattet ist.

    „Wir stellen eine neue Plattform für die Bildgebung von Magnetisierung und den resultierenden Magnetfeldern magnetischer Strukturen vor, indem wir Diamant-Magnetsensoren und einen optischen Aufbau verwenden, der uns beide Messvorgänge ermöglicht“, schreiben die Autoren in der Veröffentlichung in Physical Review Applied. Daran beteiligt waren außer den beiden Arbeitsgruppen unter anderem auch Prof. Dr. Yannick Dumeige von der Universität Rennes 1, der 2018 mit einem Friedrich Wilhelm Bessel-Forschungspreis der Alexander von Humboldt-Stiftung in der Budker-AG gearbeitet hat. Als HIM Distinguished Visitor war außerdem Prof. Kai-Mei Fu, Physikerin an der University of Washington, an dem Projekt beteiligt.

    Die Kooperationspartner planen, die neue Technik künftig bei verschiedenen multidisziplinären Problemen anzuwenden, die für die jeweiligen Partner von Interesse sind. Dazu gehören die Untersuchung von zweidimensionalen magnetischen Materialien, magnetische Effekte molekularer Chiralität und die Hochtemperatur-Supraleitung.

    Bildmaterial:
    https://download.uni-mainz.de/presse/08_physik_quantum_him_methoden_kombination_...
    Diamant-Magnetometer mit Stickstoff-Fehlstellen werden mit grünem Laserlicht optisch initialisiert.
    Foto/©: Arne Wickenbrock / JGU

    https://download.uni-mainz.de/presse/08_physik_quantum_him_methoden_kombination_...
    Eine dünne Lage aus Stickstoff-Fehlstellen im Diamanten lassen darauf aufgebrachte magnetische Strukturen sichtbar werden.
    Foto/©: Arne Wickenbrock / JGU

    https://download.uni-mainz.de/presse/08_physik_quantum_him_methoden_kombination_...
    Experimentelle Anordnung zur gleichzeitigen Abbildung magnetischer Strukturen mittels magnetooptischer Kerr-Effekt-Mikroskopie (MOKE) und Weitfeld-Diamant-Magnetometrie.
    Foto/©: Arne Wickenbrock / JGU

    Weiterführende Links:
    https://budker.uni-mainz.de/ - Arbeitsgruppe Prof. Dr. Dmitry Budker
    https://budker.uni-mainz.de/?page_id=42 – Forschungsbereich Farbzentren in Diamant
    https://www.klaeui-lab.physik.uni-mainz.de/ - Arbeitsgruppe Prof. Dr. Mathias Kläui
    https://topdyn.uni-mainz.de/ - Profilbereich TopDyn – Dynamics and Topology
    https://www.hi-mainz.de/ - Helmholtz-Institut Mainz

    Lesen Sie mehr:
    https://www.uni-mainz.de/presse/aktuell/12355_DEU_HTML.php - Pressemitteilung „Dmitry Budker erhält Norman F. Ramsey-Preis der American Physical Society” (21.10.2020)
    https://www.uni-mainz.de/presse/aktuell/12071_DEU_HTML.php - Pressemitteilung „Magnetische Wirbel kristallisieren in zwei Dimensionen“ (09.09.2020)
    https://www.uni-mainz.de/presse/aktuell/10894_DEU_HTML.php - Pressemitteilung „Skyrmionen mögen es heiß: Spinstrukturen auch bei hohen Temperaturen steuerbar“ (13.02.2020)
    https://www.uni-mainz.de/presse/aktuell/9948_DEU_HTML.php - Pressemitteilung „ERC-Förderung für die Erforschung von dreidimensionalen magnetischen Nanostrukturen“ (11.10.2019)

    Video:
    https://www.youtube.com/watch?v=qjMdp8Wg0YY – Magnetism and Magnetics Technology in the 21st Century (21.02.2020)
    https://www.youtube.com/watch?v=m6tNm_wuAxI&list=PLmGfeHeU4DbGPxcpdL2PGdbEGq... – 7th Annual Workshop on Optically-Pumped Magnetometers (WOPM) (18.10.2019)


    Wissenschaftliche Ansprechpartner:

    Dr. Arne Wickenbrock
    Quanten-, Atom- und Neutronenphysik (QUANTUM)
    Institut für Physik
    Johannes Gutenberg-Universität Mainz
    und Helmholtz-Institut Mainz
    55099 Mainz
    Tel. +49 6131 39-23685
    Fax +49 6131 39-25179
    E-Mail: wickenbr@ni-mainz.de
    https://budker.uni-mainz.de/?page_id=70


    Originalpublikation:

    Till Lenz et al.
    Imaging Topological Spin Structures Using Light-Polarization and Magnetic Microscopy
    Physical Review Applied, 17. Februar 2021
    DOI: 10.1103/PhysRevApplied.15.024040
    https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.024040


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Elektrotechnik, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).