Kohlenstoffnanoröhrchen mit Beschichtungen pun Werkstoffe

INVENTUM GmbH Hensstraße 3 53173 Bonn DEUTSCHLAND

7um Thema / Dozenten

Die Entdeckung der Kohlenstoffnanoröhrchen (carbon nanotubes, CNT) im Jahre 1991 stellt einen Meilenstein in der jüngeren Geschichte der Materialwissenschaften dar. Die Eigenschaften dieser Nanoobjekte sind einzigartig: Ihre Zugfestigkeit ist bis zu 60 Mal so hoch wie die von Stahl, ihre Dichte um das Sechsfache geringer. Ihre thermische Leitfähigkeit übertrifft die von Diamanten um mehr als das Doppelte. Als elektrische Leiter sind sie Kupfer vergleichbar - bei einer tausendfach höheren Strombelastbarkeit -. und manche Varianten von CNT zeigen auch Halbleitereigenschaften. Inzwischen sind CNT industriell im Kilotonnen-Maßstab herstellbar und besitzen ein enormes Anwendungspotential für nahezu alle Branchen. Die Veranstaltung gibt einen Überblick über Geschichte und Eigen-

schaften dieser interessanten Stoffklasse und stellt Methoden ihrer Synthese vor. Erläutert wird ihre Modifizierung zum Zweck verbesserter Dispergierbarkeit und Kompatibilität mit Substratmaterialien. CNT-Faserverbundwerkstoffe und ihre Anwendungen in Automobilbau, Luftfahrt, Medizin- und Energietechnik werden vorgestellt. Weitere Schwerpunkte bilden die Optimierung der Eigenschaften verschiedener Kunststoffklassen mittels CNT, leitfähige Schichten für diverse Einsatzfelder sowie metallische Hochleistungswerkstoffe.

Das Seminar wendet sich an Entscheider. Werkstoffwissenschaftler. Ingenieure und Techniker aus Forschung, Entwicklung, Herstellung und Anwendung sowie Einkäufer aus Unternehmen, die sich einen Überblick über die Potentiale von Kohlenstoffnanoröhrchen für ihre Branche verschaffen, zukünftig

CNT-veredelte Werkstoffe in ihren Produkten einsetzen oder selbst neue CNT-basierte Materialien entwickeln möchten.

Die Fortbildungsveranstaltung steht unter der fachlichen Leitung von Dr. Marius Kölbel, materialinnovation.de, Köln.

Weitere Dozenten sind:

Prof. Dr. Karl Schulte

Technische Universität Hamburg-

Dr. Oliver Schlüter

Bayer Technology Services GmbH, Leverkusen

Dr. Jens Helbig

Georg-Simon-Ohm-Hochschule für angewandte Wissenschaften, Nürnberg

Dr. Petra Pötschke

Leibniz-Institut für Polymerforschung Dresden e.V.

Dipl.-Ing. Klaus Hildebrandt

Institut für Verbundwerkstoffe GmbH. Kaiserslautern

Dipl.-Ing. Ivica Kolaric

Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Stuttgart

Dr. Blanka Lenczowski

EADS Deutschland GmbH. München

Dr. Ansgar Komp

Freudenberg-Forschungsdienste KG, Weinheim

Teilnehmerhinweise

Die Fortbildungsveranstaltung findet in den Räumlichkeiten des INM – Leibniz-Institut für Neue Materialien gGmbH, Campus D2 2, Saarbrücken, statt.

Da der Teilnehmerkreis der Fortbildungsveranstaltung auf 24 Teilnehmer begrenzt ist, erfolgt die Registrierung nach dem Eingangsdatum der Anmeldung. Die Teilnahmegebühr bitten wir erst nach Erhalt der Bestätigung unter Angabe des Namens des Teilnehmers und der kompletten Rechnungsnummer auf eines der INVENTUM GmbH Konten zu überweisen.

Informationen zur Zimmerbestellung erhalten Sie mit den Bestätigungsunterlagen.

Weitere Informationen erhalten Sie bei:

INVENTUM GmbH Isabella Sittel-Sanna Hensstraße 3 D-53173 Bonn

Telefon: +49 (0) 151 46 44 59 80 E-Mail: fortbildung@inventum.de http://www.inventum.de

Teilnahmegebühr für DGM-Mitglieder: 1.100,- EURO inkl.

Persönliche DGM-Mitglieder bzw. 1 Mitarbeiter eines DGM-Mitaliedsinstitutes / DGM-Mitgliedsunter-

DGM-Nachwuchsmitglied (<30 Jahre)*: 550.- EURO inkl. MwSt.

Teilnahmegebühr: 1.200,- EURO inkl. MwSt.

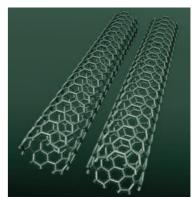
Nachwuchsteilnehmer (<30 Jahre)*: 720,- EURO inkl. MwSt.

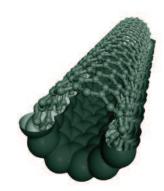
* Nachwuchsplätze werden nur vergeben, wenn die Veranstaltung nicht voll ausgelastet ist. Spätestens 3 Wochen vor Veranstaltungsbeginn erhalten die angemeldeten Nachwuchsteilnehmer eine Mitteilung, ob die Teilnahme möglich ist. Bei großer Nachfrage wird bei der Platzvergabe das DGM-Nachwuchsmitglied bevorzugt.

In der Teilnahmegebühr sind enthalten:

- Seminarunterlagen
- Pausengetränke
- Mittagessen
- ein gemeinsames Abendessen

Teilnahmebedingungen:


Mit der Anmeldung werden die nachfolgenden Teilnahmebedingungen verbindlich anerkannt. Abmeldungen müssen schriftlich erfolgen. Bei Rücktritt bis 30 Tage vor Veranstaltungsbeginn beträgt die Bearbeitungsgebühr pauschal 100 Euro. Danach beträgt die Stornierungsgebühr 50% der Teilnahmegebühr. Die Stornierung muss 10 Tage vor Veranstaltungsbeginn vorliegen, anderenfalls ist die volle Teilnahmegebühr zu zahlen. In diesem Fall senden wir die Veranstaltungsunterlagen auf Wunsch zu. Es ist möglich, nach Absprache einen Ersatzteilnehmer zu benennen. Muss eine Veranstaltung aus unvorhersehbaren Gründen abgesagt werden, erfolgt eine sofortige Benachrichtigung. In diesem Fall besteht nur die Verpflichtung zur Rückerstattung der bereits gezahlten Teilnahmegebühr. In Ausnahmefällen behalten wir uns den Wechsel von Referenten und/oder Änderungen im Programmablauf vor. In jedem Fall beschränkt sich die Haftung der INVENTUM GmbH ausschließlich auf die Teilnahmege-



DGM

Fortbildungsseminar

Werkstoffe und **Beschichtungen mit** Kohlenstoffnanoröhrchen

14.-15. Mai 2013

Saarbrücken

Seminarleitung

Dr. Marius Kölbel

INVENTUM GmbH

www.inventum.de

Dienstag

09:45 Begrüßung

10:00	K. Schulte Kohlenstoffnanoröhrchen (CNT) – Einführung in das Thema
11:00	O. Schlüter Synthese von CNT
12:00	Mittagspause
13:30	J. Helbig Funktionalisierung von CNT
14:30	P. Pötschke Dispergierung und Compoundierung von CNT
15:30	Kaffeepause
16:00	K. Hildebrandt Faserverbundwerkstoffe mit CNT I
17:00	K. Schulte Faserverbundwerkstoffe mit CNT II
18:00	Ende des ersten Veranstaltungstages
19:30	Geselliges Beisammensein

Mittwoch

09:00	P. Pötschke Thermoplastische Nanocomposite mit CNT
10:00	I. Kolaric Elektrisch leitfähige transparente CNT-Composit-Beschichtungen
11:00	Kaffeepause
11:30	B. Lenczowski Metallische Hochleistungswerkstoffe mit CNT
12:30	Mittagspause
14:00	A. Komp CNT-Elastomere
15:00	Abschlussdiskussion
16:00	Ende der Veranstaltung

Neu im Programm

2526.02	2. Betrieblicher Arbeitsschutz	
2627.02	2. Material- und Rohstoffeffizienz	
2627.02	 Schadensanalyse von Dichtungen aus Elastomeren und Thermoplastischen Elastomeren (TPEs) 	_
0608.03	3. Fatigue of Structures	che
2021.03	3. Technische Kunststoffe	öhr
0809.04	4. Fatigue and Finite Element Analysis	nor
1617.04	4. Marketing - Basis	ffna
17.04	4. Application of Microstructural Modeling in Materials Development	ensto
1819.04	4. Rostfreie Stähle	ohle
2324.04	4. Leichtbau im Automobil	# *
2324.04	4. e-Learning	2
2425.04	4. Methoden der Synthese, Modifizierung und Verarbeitung von Nanopartikeln	nnge
2930.04	4. Kompetenz zeigen - Vertrauen schaffen	icht
0708.0!	5. Burnout Prävention und Stressbewältigung als Ver- antwortung für Unternehmer und Führungskräfte	Besch
1516.0!	5. Innovationsmanagement - Innovationen erzeugen, erkennen und umsetzen	Werkstoffe und Beschichtungen mit Kohlenstoffnanoröhrchen
0406.06	5. Phase Equilibria and Transformations - Presentation of various software approaches 5. Qualitätsmanagement 6. Aufbau und Organisation	toffe
1112.06	5. Qualitätsmanagement	rks
1314.06	5. Aufbau und Organisation von Entwicklungsprojekten	Ž Š

03.07. Der gesunde Tag

offe und Beschichtungen mit Kohlenst

14. - 15. Mai 2013 Fortbildungsveranstaltung in Saarbrücken