idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/22/2011 10:35

Therapieansatz für das humane Usher-Syndrom: Kleine Moleküle ignorieren Stopp-Signale

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Das Usher-Syndrom ist mit einer Häufigkeit von 1:6000 die häufigste Form angeborener Taub-Blindheit des Menschen. Es ist eine rezessiv vererbte Krankheit, die klinisch und genetisch sehr heterogen ist. Im dramatischsten Fall werden die Patienten taub geboren und leiden ab der Pubertät an einer Degeneration der Netzhaut, die zur völligen Erblindung führt. Für die Betroffenen bedeutet diese Krankheit eine große Einschränkung in ihrem alltäglichen Leben. Während der Gehörverlust mit Hörgeräten und Cochlea-Implantaten ausgeglichen werden kann, gibt es bislang noch keine Therapiemöglichkeit für das Auge. Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben nun einen neuen Therapieansatz für die Krankheit nachgewiesen.

    In vorangegangen Studien erarbeitete sich das Forschungsteam um Univ.-Prof. Dr. Uwe Wolfrum vom Institut für Zoologie grundlegende Erkenntnisse über die molekularen Prozesse und Mechanismen, die zu dieser schwerwiegenden Erkrankung führen. Auf die Ergebnisse dieser erfolgreichen Grundlagenforschung aufbauend, evaluiert das Mainzer Usher-Therapieteam um Dr. Kerstin Nagel-Wolfrum potenzielle Therapiemöglichkeiten für das Auge. Hierbei liegt ein Fokus auf einer Mutation, die in einer deutschen Familie zu der schwerwiegendsten Form des Usher-Syndroms geführt hat. Bei dieser Mutation handelt es sich um eine sogenannte Nonsense-Mutation im USH1C-Gen, bei der ein Stopp-Signal in der DNA entsteht und folglich die Proteinsynthese vorzeitig abgebrochen wird.

    In der Mai-Ausgabe der Fachzeitschrift „Human Gene Therapy“ hat das Forscherteam nun seine neuesten Arbeiten zu den pharmakogenetischen Therapieansätzen für die Behandlung von Usher-Syndrom-Patienten mit Nonsense-Mutationen publiziert. Die Wissenschaftler konnten zeigen, dass ein kleines Molekül namens PTC124 (Ataluren®) das Überlesen des Stopp-Signals im mutierten USH1C-Gen auslöst und dadurch die Proteinsynthese weiterläuft und das funktionelle Genprodukt in den Zell- und Organkulturen hergestellt wird. Der Wirkstoff PTC124 zeigte in der Studie neben seiner Überleseeigenschaft auch eine hervorragende Verträglichkeit in Netzhautkulturen der Maus und des Menschen. Zudem gelang es dem Team erstmals, das Überlesen einer Mutation im Auge in vivo nachzuweisen.

    „PTC124 wird bereits bei anderen durch Nonsense-Mutationen bedingten Krankheiten wie z.B. der cystischen Fibrose oder der Duchenne-Muskeldystrophie in klinischen Studien getestet. Daher hoffen wir, dass dieser Therapieansatz in naher Zukunft auch für Usher-Syndrom-Patienten eingesetzt werden kann“, erklärt Dr. Kerstin Nagel-Wolfrum.

    Zurzeit vergleicht Tobias Goldmann in abschließenden Arbeiten zu seiner Doktorarbeit die Effizienz der Überleserate und die Biokompatibilität weiterer Moleküle, die das Überlesen von Nonsense-Mutationen induzieren. Dabei stehen vor allem modifizierte Aminoglykoside, Abkömmlinge von handelsüblichen und klinisch erprobten Antibiotika, im Vordergrund. Diese werden vom israelischen Kooperationspartner Prof. Dr. Timor Bassov vom Technicon in Haifa designt und synthetisiert und wurden von den Mainzer Forschern auch schon erfolgreich zum Überlesen von Nonsense-Mutationen in Usher-Genen eingesetzt. Neben weiterführenden präklinischen Untersuchungen zur Anwendung der Wirkstoffe im Auge plant das Mainzer Usher-Labor, das neuartige Verfahren zur Therapie des Usher-Syndroms möglichst zeitnah in die Klinik direkt zum Patienten zu bringen.

    Die translationalen biomedizinischen Forschungsarbeiten zum Überlesen der Nonsense-Mutationen zur Therapie des Usher-Syndroms wurden dank der Fördermittel der FAUN-Stiftung, des EU-Projekts „Syscilia“ und des Graduiertenkollegs der Deutschen Forschungsgemeinschaft GRK 1044 „Entwicklungsabhängige und krankheitsinduzierte Modifikationen im Nervensystem“ durchgeführt und sind seit Kurzem im Mainzer Forschungsschwerpunkt Translationale Neurowissenschaften (FTN) integriert.

    Veröffentlichungen:
    Goldmann T, Overlack N, Wolfrum U, Nagel-Wolfrum K (2011) PTC124 mediated translational read-through of a nonsense mutation causing Usher type 1C. Hum. Gene Ther. 22:537-547. DOI: 10.1089/hum.2010.067
    Goldmann T, Rebibo-Sabbah A, Overlack N, Nudelman I, Belakhov V, Baasov T, Ben-Yosef T, Wolfrum U, Nagel-Wolfrum K (2010) Designed aminoglycoside NB30 induces beneficial read-through of a USH1C nonsense mutation in the retina. Invest Ophthalmol Visual Sci 51:6671-80. DOI: 10.1167/iovs.10-5741

    Weitere Informationen:
    Dr. Kerstin Nagel-Wolfrum
    Institut für Zoologie
    Zell- und Matrixbiologie
    Johannes Gutenberg-Universität Mainz (JGU)
    D 55099 Mainz
    Tel. +49 6131 39-20131 oder 39-23934
    Fax +49 6131 39-23815
    E-Mail: nagelwol@uni-mainz.de


    More information:

    http://www.ag-wolfrum.bio.uni-mainz.de
    http://www.liebertonline.com/doi/abs/10.1089/hum.2010.067 (Abstract)


    Images

    Fluoreszenzmikroskopische Analyse von Zellen mit einer Nonsense-Mutation im Usher-Syndrom 1C-Gen (USH1C/Harmonin): Nach Applikation von PTC124 wird in der Zelle rechts diese USH1C-Mutation überlesen und das erhaltene Harmonin-Protein (grün) kann seine molekulare Funktion bei der Bündelung von Aktinfilamenten (rot) entfalten.
    Fluoreszenzmikroskopische Analyse von Zellen mit einer Nonsense-Mutation im Usher-Syndrom 1C-Gen (US ...
    Quelle: T. Goldmann, JGU, Institut für Zoologie
    None


    Criteria of this press release:
    Journalists, all interested persons
    Biology, Medicine
    transregional, national
    Research results
    German


     

    Fluoreszenzmikroskopische Analyse von Zellen mit einer Nonsense-Mutation im Usher-Syndrom 1C-Gen (USH1C/Harmonin): Nach Applikation von PTC124 wird in der Zelle rechts diese USH1C-Mutation überlesen und das erhaltene Harmonin-Protein (grün) kann seine molekulare Funktion bei der Bündelung von Aktinfilamenten (rot) entfalten.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).