idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/26/2012 13:30

Nano-Materialien für medizinische Messgeräte

Dr. Boris Pawlowski Presse und Kommunikation
Christian-Albrechts-Universität zu Kiel

    Das Magnetfeld des Gehirns kann bislang nur unter technischen Laborbedingungen gemessen werden. Für den breiten medizinischen Einsatz kommt diese Technik deshalb bislang nicht in Frage. Drei Forschungsteams an der Christian-Albrechts-Universität zu Kiel (CAU) haben gemeinsam eine neue Art magnetoelektrischer Sensoren entwickelt, mithilfe derer die Nutzung dieser wichtigen Technologie in Zukunft möglich sein soll. Der wissenschaftliche Durchbruch: Die neuen Sensoren funktionieren im Gegensatz zu herkömmlichen magnetoelektrischen Messtechniken ohne Kühlung und ohne äußeres magnetisches Stützfeld. Im Fachmagazin Nature Materials werden die neuen Verbundwerkstoffe beschrieben.

    „Unsere Verbundwerkstoffe mit Austauschkopplung sind ein internationaler Meilenstein in der Forschung über magnetoelektrische Materialien“, sagt Professor Eckhard Quandt, Senior-Autor der Studie und Sprecher des Kieler Sonderforschungsbereiches 855 Magnetoelektrische Verbundstoffe - biomagnetische Schnittstellen der Zukunft (SFB 855). „Mit der Unabhängigkeit von externen magnetischen Stützfeldern haben wir ein ganz wesentliches Hindernis für medizinische Anwendungen von magnetoelektrischen Sensoren wie Magnetokardiographie und Magnetoenzephalographie beiseite geräumt.“ Da sich die Sensoren wegen ihres besonderen Aufbaus nicht gegenseitig störten, seien nun auch Messarrays aus Hunderten Messeinheiten denkbar. Damit ließen sich flächige Karten von Herz- oder Hirnströmen erstellen.

    Die neuartigen Verbundwerkstoffe bestehen aus einer komplexen Abfolge von etwa hundert Materialschichten, von denen jede einzelne nur wenige Nanometer dick ist. „Unsere magnetoelektrischen Sensoren enthalten sowohl magnetostriktive als auch piezoelektrische Schichten, die sich einerseits durch ein zu messendes magnetisches Feld verformen und zeitgleich durch diese Verformung eine elektrische Spannung erzeugen, die dann als Messsignal verwendet wird. Aber solche hochempfindlichen Messungen funktionierten mit den herkömmlichen Schichtsystemen bislang nur, wenn am Sensor ein ‚stützendes‘ Magnetfeld anliegt“, erläutert der Doktorand Enno Lage den Hintergrund der Studie, an der er seit 2010 arbeitet.

    „Das Besondere an unseren Verbundwerkstoffen sind antiferromagnetische Hilfsschichten aus Mangan-Iridium, die im Inneren des Werkstoffs wie Magnetfelder wirken“, ergänzt Lage. „Das Stützfeld für die Messung wird also direkt im Sensor erzeugt und muss nicht mehr von außen angelegt werden.“ Ein vollständiger Sensor misst typischerweise wenige Millimeter und trägt eine Multischicht eines solchen neuen Werkstoffs, die etwa einen Tausendstel Millimeter dick ist. Die neuen Verbundstoffe wurden im Reinraum des Kieler Nano-Labors hergestellt. „Nur in dieser extrem staubfreien Umgebung kann man solche Sensorsysteme erfolgreich herstellen“, sagt Dr. Dirk Meyners, der Lage während der Promotion wissenschaftlich betreut.

    Mit dem Entwicklungsschritt hin zur Unabhängigkeit magnetolektrischer Messungen von externen Stützfeldern erreichen die Arbeitsgruppen um die Professoren Lorenz Kienle, Reinhard Knöchel und Eckhard Quandt ein wichtiges Teilziel des SFB 855, der seit Januar 2010 von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird. Im SFB sollen neuartige Verbundwerkstoffe entwickelt und in eine voll funktionsfähige, biomagnetische Schnittstelle zwischen Mensch und Außenwelt implementiert werden. Quandt weist auf zukünftige Chancen hin: „Über die Möglichkeiten des SFB hinaus könnten wir im derzeit in Planung befindlichen Exzellenzcluster Materials for Life ganz gezielt eine Reihe weiterer Anwendungen auf der Basis dieser Verbundstoffe voran bringen, zum Beispiel als Sensoren für eine nicht-invasive Gehirnstimulation.“

    Originalpublikation:
    Lage, E., Kirchhof, C., Hrkac, V., Kienle, L., Jahns, R., Knöchel, R., Quandt, E. and Meyners, D.: Exchange biasing of magnetoelectric composites, Nature Materials doi:10.1038/nmat3306, http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3306.html

    Folgende Fotos zum Thema stehen zum Download bereit:

    http://www.uni-kiel.de/download/pm/2012/2012-121-1.jpg
    Bildunterschrift 1: Querschnittsaufnahme mittels Elektronenmikroskopie eines neuen magnetoelektrischen Verbundsensors aus piezoelektrischem Material (untere Hälfte) und magnetostriktivem Material mit integrierten Hilfsschichten (obere Hälfte)
    Foto: Christiane Zamponi
    Copyright: Uni Kiel/ Institut für Materialwissenschaft

    http://www.uni-kiel.de/download/pm/2012/2012-121-2.jpg
    Bildunterschrift 2: Dirk Meyners, Eckhard Quandt und Enno Lage (v.l.n.r.) im Kieler Nano-Labor
    Foto: Stefanie Maack
    Copyright: Uni Kiel

    http://www.uni-kiel.de/download/pm/2012/2012-121-3.jpg
    Bildunterschrift 3: Das Kieler Nano-Labor bietet exzellente Bedingungen für Forschung und Entwicklung.
    Foto: Jürgen Haacks
    Copyright: Uni Kiel

    Kontakt:
    Institut für Materialwissenschaft
    Professor Eckhard Quandt
    Tel. 0431 880-6200
    E-Mail: eq@tf.uni-kiel.de


    More information:

    http://www.uni-kiel.de/aktuell/pm/2012/2012-121-biomagnetische-sensoren.shtml - Link zur Pressemitteilung


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Electrical engineering, Materials sciences, Medicine
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).