idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/05/2013 10:24

Das MRT der Zukunft: Bildgebende Diagnostik mit Xenon

Silke Oßwald Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Molekulare Pharmakologie (FMP)

    Bei der Entwicklung einer neuartigen Methode für bildgebende Diagnostik ist Berliner Forschern ein weiterer Durchbruch gelungen. Mit Hilfe von Xenon-Biosensoren sollen künftig auch winzige krankmachende Details sichtbar werden – Krebszellen oder arteriosklerotische Ablagerungen könnte man auf diese Weise frühzeitig aufspüren. Die Ergebnisse sind in der aktuellen Online-Ausgabe der Fachzeitschrift Angewandte Chemie veröffentlicht.

    Weltweit arbeitet eine Handvoll Forschergruppen an dem Verfahren, mit ihrer jüngsten Veröffentlichung haben sich Leif Schröder und seine Mitarbeiter vom Leibniz-Institut für Molekulare Pharmakologie (FMP) sowie sein Kollege Christian Freund von der Freien Universität Berlin erneut an die Spitze gesetzt: Erstmals ist es ihnen gelungen, mit Hilfe von Xenon-Gas Aufnahmen von speziell markierten lebenden Zellen zu erzeugen. Es handelt sich dabei um eine Variante der Magnetresonanztomographie (MRT), die in ihrer konventionellen Form aus dem klinischen Alltag nicht mehr wegzudenken ist. Doch anstelle der gewohnten Bilder, die die Gewebestrukturen in Grautönen zeigen, soll die neue Technik einmal bunte Bilder liefern, auf denen man unterschiedliche krankhafte Zelltypen oder Ablagerungen erkennen kann.
    Die MRT nutzt den Kernspin von Atomkernen, die in starken Magnetfeldern mit Radiowellen in Wechselwirkung treten. Anders als beim herkömmlichen Verfahren messen die Forscher am FMP aber nicht die Resonanz von Wasserstoff-Atomen, die im menschlichen Körper zwar allgegenwärtig sind, aber nur schwache Signale aussenden. Stattdessen verwenden sie „hyperpolarisiertes“ Xenon, dessen Atomkerne weit stärkere Signale liefern – ähnlich einer sehr hellen Glühbirne.
    Bei künftigen klinischen Untersuchungen müssten die Patienten das ungiftige Edelgas Xenon zunächst einatmen, sodass es sich im Körper verteilt. Die FMP-Forscher haben zudem Moleküle entwickelt, die durch ihre besondere Käfigstruktur Xenon-Atome einfangen, entsprechend einer passenden Fassung für die Glühbirne. Die Xenon-Käfige kann man wiederum an maßgeschneiderte Bio-Sensoren koppeln, die sich gezielt an krankmachende Zellen oder Ablagerungen im Körper anheften. Auf diese Weise erhält man aus genau diesen Bereichen Signale, und ein Computer errechnet daraus ein Bild.
    Bereits im vergangenen Jahr haben die FMP-Forscher unter Beweis gestellt, dass sie die technischen Tücken der Methode inzwischen so weit im Griff haben, dass hochaufgelöste Bilder möglich sind. Nun haben sie die Technik erstmals erfolgreich an Bindegewebszellen von Mäusen getestet, die mittels der entwickelten Xenon-Käfige zum Leuchten gebracht wurden.
    Die Zellen wurden dazu in einer eigens konstruierten Apparatur innerhalb des MRT-Gerätes am Leben gehalten und mit Nährmedium überspült, das mit dem Xenon gesättigt war. Dies entspricht dem Blutkreislauf eines Patienten, der das eingeatmete Edelgas zu den Organen transportiert. Mittels Radiowellen und eines starken Magnetfeldes erhielten die Wissenschaftler nun Signale von den Xenonatomen, welche mittels der Käfig-Moleküle innerhalb der Zellen eingefangen wurden - die Glühbirne findet ihre Fassung und beginnt zu leuchten, und zwar je nach molekularer Umgebung bei unterschiedlicher Wellenlänge. In den so erzeugten Bildern kann man bei einer Auflösung von einem halben Millimeter zwischen Bereichen von Zellen mit oder ohne Xenon-Käfigen unterscheiden.
    „Unser Ziel ist, dass wir mit Hilfe verschiedener Käfige Biosensoren bauen, die eines Tages sogar den Aufbau eines Tumors aus unterschiedlichen Zelltypen darstellen können“, sagt Leif Schröder. Auf dieser Grundlage könnte man dann besser entscheiden, welche Therapie im individuellen Fall die wirksamste ist. „Wir haben zwei Jahre an dem neuen Versuchsaufbau getüftelt, bis es endlich geklappt hat“ so sein Doktorand Stefan Klippel, der die Apparatur entworfen hat. „Als nächsten denken wir über Tierversuche nach und arbeiten an einem Krebs-spezifischen Sensor, in Zusammenarbeit mit der University of California in Berkeley.“

    (Epub ahead of print) DOI:10.1002/anie.201307290


    More information:

    http://www.fmp-berlin.de


    Images

    Criteria of this press release:
    Journalists
    Biology, Chemistry, Medicine, Nutrition / healthcare / nursing, Physics / astronomy
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).