idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/10/2011 21:59

Neue chemische Bindungen in Hochdruck-Bor-Kristallen entdeckt

Christian Wißler Forschungsmarketing
Universität Bayreuth

    Die Welt der chemischen Bindungen ist noch immer für Überraschungen gut. In Bor- Kristallen, die im Hochdruck-Laboratorium des Bayerischen Geoinstituts (BGI) hergestellt wurden, hat ein Forschungsteam der Universität Bayreuth chemische Bindungen entdeckt, die in Bor-haltigen Materialien bisher unbekannt waren. Über diese Erkenntnisse, die aus einer Zusammenarbeit mit der European Synchrotron Radiation Facility in Grenoble und der schwedischen Universität Linköping hervorgegangen sind, berichten die Bayreuther Wissenschaftler in den "Physical Review Letters". Unter extremen Drücken synthetisierte Bor-Kristalle besitzen als Halbleitermaterialien hochinteressante Eigenschaften.

    Hochdruck-Synthese von Einkristallen für die Bor-Forschung

    Bor ist ein chemisches Element, das hinsichtlich seiner Strukturen weniger gut erforscht ist als andere chemische Elemente. Insbesondere die chemischen Bindungen, die zwischen Bor-Atomen bestehen, sind längst nicht vollständig aufgeklärt. Denn moderne Untersuchungsverfahren mit Synchrotron-Röntgenstrahlung, die grundsätzlich über die Lage der Elektronen und über die Art der chemischen Bindungen in einem Material Aufschluss geben können, ließen sich lange Zeit auf das leichte Element Bor (B) nicht anwenden. Um diese Verfahren für die Untersuchung von Bor einsetzen zu können, benötigt die Forschung möglichst hochwertige Einkristalle. Einkristalle eines Materials sind dadurch charakterisiert, dass sich die Atome in eine einheitliche Gitterstruktur einfügen. Sie gelten in der Forschung als qualitativ hochwertig, wenn keine oder allenfalls geringfügige Abweichungen von der Gitterstruktur vorkommen. Hochwertige Einkristalle, die sich aus Bor-Atomen zusammensetzen, entstehen aber nur unter technisch äußerst anspruchsvollen Bedingungen und waren deshalb für die Forschung lange Zeit nicht verfügbar. Und so blieben die chemischen Bindungen in Bor-haltigen Materialien weitgehend unzugänglich.

    Erst vor zwei Jahren hat ein Forschungsteam der Universität Bayreuth unter der Leitung von Prof. Dr. Leonid Dubrovinsky ein zuverlässiges Verfahren entwickeln können, das es ermöglicht, Bor-Kristalle unter hohen Drücken zu synthetisieren. Für diese aufwändigen Arbeiten bildeten die europaweit einzigartigen Technologien der Hochdruck- und Hochtemperaturforschung im Bayerischen Geoinstitut, einem Forschungszentrum der Universität Bayreuth, eine leistungsstarke Infrastruktur. Mit dem neuen Verfahren ist es gelungen, qualitativ hochwertige Einkristalle zu züchten. Darin sind Ikosaeder, die jeweils aus 12 Bor-Atomen bestehen, in einer durchweg einheitlichen und stabilen Gitterstruktur angeordnet.

    Kooperation mit der European Synchrotron Radiation Facility (ESRF)

    Diese Einkristalle wurden mit Synchrotronstrahlung analysiert, d.h. mit einer intensiven Röntgenstrahlung, die im Teilchenbeschleuniger zu Forschungszwecken gezielt erzeugt wird. Die Arbeiten standen unter der Leitung von Prof. Dr. Sander van Smaalen, der an der Universität Bayreuth den Lehrstuhl für Kristallographie innehat, und Prof. Dr. Natalia Dubrovinskaia, die vor kurzem in Bayreuth eine Heisenberg-Professur für Materialphysik und Technologie bei extremen Bedingungen übernommen hat. Das Bayreuther Team arbeitete eng mit der European Synchrotron Radiation Facility (ESRF) in Grenoble zusammen, einer der größten Synchrotronstrahlenquellen in Europa. Die hier durch Röntgenbeugung gewonnenen Daten wurden mit speziellen Rechenprogrammen in sog. Gradientenbilder übersetzt. Gradientenbilder geben Auskunft über die unterschiedliche Elektronendichte in einem Material. Sie ermöglichen zuverlässige Rückschlüsse auf die Position und die Stabilität von chemischen Bindungen, die zwischen den Atomen bestehen.

    Auswertung von Gradientenbildern

    Gemeinsam mit einer Arbeitsgruppe für Theoretische Physik an der Universität Linköping haben die Bayreuther Hochdruckforscher die Gradientenbilder ausgewertet, die bei der Analyse der Hochdruck-Bor-Kristalle entstanden waren. Dabei entdeckten sie zwei Arten von chemischen Bindungen, von denen man bisher nicht wusste, dass sie innerhalb eines Bor-Kristalls existieren können. Physikalisch gesprochen, handelt es sich einerseits um ein-Elektron-zwei-Zentren-Bindungen, die benachbarte ikosaedrische Bor-Cluster verbinden; andererseits um polar-kovalente zwei-Elektronen-drei-Zentren-Bindungen. Letzere werden gebildet zwischen einem Paar von Atomen aus einem ikosaedrischen Bor-Cluster und einem Atom der interstitiellen B2-Gruppe.

    "Diese für uns überraschenden Erkenntnisse sind zunächst einmal für die Grundlagenforschung interessant", erklärt Prof. Dr. Sander van Smalen. "Wir müssen aber mit der Möglichkeit rechnen, dass die unter extremen Drücken gebildeten Bor-Kristalle an Bedeutung für die Industrie gewinnen. Denn wenn sie für elektronische Geräte und Schaltungen als Halbleiter eingesetzt werden, besitzen sie einzigartige optische Eigenschaften und zeichnen sich durch eine überdurchschnittliche Härte aus. Für derartige industrielle Anwendungen können unsere Grundlagenforschungen in einer Weise relevant werden, die sich heute noch nicht absehen lässt."

    Die Bayreuther Forschungsarbeiten an Hochdruck-Bor-Kristallen und an Bor-verwandten Materialien werden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen ihrer Schwerpunktprogramme 1236 ("Strukturen und Eigenschaften von Kristallen bei extrem hohen Drücken und Temperaturen") und 1178 ("Experimentelle Elektronendichte als Schlüssel zum Verständnis chemischer Wechselwirkungen") gefördert.

    Veröffentlichung:

    S. Mondal, S. van Smaalen, A. Schönleber, Y. Filinchuk, D. Chernyshov, S. I. Simak, A. S. Mikhaylushkin, I. A. Abrikosov, E. Yu. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia,
    Electron-Deficient and Polycenter Bonds in the High-Pressure γ-B28 Phase of Boron,
    in: Physical Review Letters, 106, 215502 (2011).
    DOI-Bookmark: 10.1103/PhysRevLett.106.215502

    Ansprechpartner für weitere Informationen:

    Prof. Dr. Sander van Smalen
    Lehrstuhl für Kristallographie
    Universität Bayreuth
    D-95440 Bayreuth
    Tel.: +49 (0)921 55-3886
    E-Mail: smash@uni-bayreuth.de

    Prof. Dr. Natalia Dubrovinskaia
    Materialphysik und Technologie bei extremen Bedingungen
    Universität Bayreuth
    D-95440 Bayreuth
    Tel.: +49 (0)921 55-3880
    E-Mail: natalia.dubrovinskaia@uni-bayreuth.de

    Prof. Dr. Leonid Dubrovinsky
    Bayerisches Geoinstitut (BGI)
    Universität Bayreuth
    D-95440 Bayreuth
    Tel.: +49 (0)921 55-3736
    E-Mail: leonid.dubrovinsky@uni-bayreuth.de


    Images

    Forschungsteam an der Universität Bayreuth (von li.): PD Dr. Andreas Schönleber, Dr. Swastik Mondal, Prof. Dr. Sander van Smaalen (Lehrstuhl für Kristallographie), Prof. Dr. Natalia Dubrovinskaia (Professur für Materialphysik und Technologie), Prof. Dr. Leonid Dubrovinsky (Bayerisches Geoinstitut).
    Forschungsteam an der Universität Bayreuth (von li.): PD Dr. Andreas Schönleber, Dr. Swastik Mondal, ...
    Foto: Lehrstuhl für Kristallographie der Universität Bayreuth; zur Veröffentlichung frei.
    None

    Das Gradientenbild der Elektronendichte zeigt einen Ausschnitt aus einem Bor-Kristall, das unter hohem Druck synthetisiert wurde. Die Zentren B1, B4 und B5 markieren die Positionen von Bor-Atomen. Die blauen Punkte zwischen B1 und B4 stehen für ein-Elektron-zwei-Zentren-Bindungen. Die drei blauen Punkte, welche B4-B4-B5 verbinden, stehen zusammen mit dem grünen Punkt in der Mitte von B4-B4-B5 für eine zwei-Elektronen-drei-Zentren-Bindung.
    Das Gradientenbild der Elektronendichte zeigt einen Ausschnitt aus einem Bor-Kristall, das unter hoh ...
    Abbildung: Prof. Dr. Sander van Smaalen; nur mit Autorennachweis zur Veröffentlichung frei.
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Chemistry, Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).