idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/10/2014 21:00

Wie stark schwanken die Temperaturen im Meer?

Folke Mehrtens Kommunikation und Medien
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

    Das Klima der Erde scheint in den letzten 7000 Jahren sehr viel unbeständiger gewesen zu sein als bisher gedacht. Diese Schlussfolgerung legt eine neue Studie nahe, die im US-amerikanischen Wissenschaftsmagazin PNAS veröffentlicht wird. Wissenschaftler vom Potsdamer Alfred-Wegener-Institut und der Harvard University zeigen darin, dass die aus Klimaarchiven rekonstruierten Meeresoberflächentemperaturen auf langen Zeitskalen erheblich stärker variieren als von Klimamodellen berechnet. Konsequenz: entweder liefern gängige Klimaarchive ungenaue Temperatursignale oder die getesteten Modelle unterschätzen die regionalen Klimaschwankungen in der jüngeren Erdgeschichte.

    Neue Studie zeigt erhebliche Differenzen zwischen Klimaarchiven und Klimamodellen

    Potsdam/Bremerhaven, den 10. November 2014. Das Klima der Erde scheint in den letzten 7000 Jahren sehr viel unbeständiger gewesen zu sein als bisher gedacht. Diese Schlussfolgerung legt eine neue Studie nahe, die im Lauf dieser Woche im US-amerikanischen Wissenschaftsmagazin „Proceedings of the National Academy of Sciences“ (PNAS) veröffentlicht wird. Wissenschaftler vom Potsdamer Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, und der Harvard University zeigen darin, dass die aus Klimaarchiven rekonstruierten Meeresoberflächentemperaturen auf langen Zeitskalen erheblich stärker variieren als von Klimamodellen berechnet. Konsequenz: entweder liefern gängige Klimaarchive ungenaue Temperatursignale oder die getesteten Modelle unterschätzen die regionalen Klimaschwankungen in der jüngeren Erdgeschichte.

    Wer die Klimageschichte rekonstruieren will, muss natürliche Archive studieren, denn der Mensch hat den Planeten erst seit erdgeschichtlich kurzer Zeit vermessen. Reale Messwerte von Meerestemperaturen gibt es erst seit ungefähr 150 Jahren. Für die Zeiträume davor sind Wissenschaftler auf sogenannte „Proxies“ angewiesen – Indikatoren, die indirekte Rückschlüsse auf Klimadaten früherer Zeiten erlauben. Solche Klimaarchive beziehen sich in der Regel auf räumlich begrenzte Gebiete und unterscheiden sich in ihrer zeitlichen Auflösung. Außerdem zeigen sie mitunter ein erhebliches Hintergrundrauschen.

    „In unserer Untersuchung interessierte uns nicht, wie warm das Klima zum Zeitpunkt X in einer bestimmten Region gewesen sein mag. Wir wollten rückblickend analysieren, wie stark das regionale Klima über Jahrzehnte bis Jahrtausende zeitlich variiert“, erläutert Dr. Thomas Laepple vom Alfred-Wegener-Institut. „Eine unserer größten Herausforderungen bestand deshalb darin, verschiedene Messdaten und Klimaarchive aus einer Vielzahl von Regionen untereinander vergleichbar zu machen und das natürliche Rauschen herauszufiltern, das die Aussagekraft mancher Klimaarchive stark verfälscht.“

    Laepple und sein Kollege Peter Huybers von der Harvard University verglichen Daten aus Temperaturmessungen, Korallen und Sedimentkernen, die aus vielen verschiedenen Meeresregionen der Erde stammen. Klimadaten aus heutigen Korallen reichen maximal 400 Jahre in die Vergangenheit zurück. Sie erlauben Rückschlüsse auf Temperaturänderungen im Lauf von Jahrzehnten oder Jahrhunderten. Meeressedimente können sehr viel ältere Informationen enthalten, erreichen in der Regel aber nur eine Auflösung über Jahrhunderte und Jahrtausende. Durch verschiedene Eich- und Filterprozesse gelang es den beiden Forschern, eine Vielzahl verfügbarer Daten aus Temperaturmessungen und Klimaarchiven so zu kombinieren, dass sie die rekonstruierten Meeresoberflächentemperaturen an verschiedenen Orten der Welt über einen Zeitraum von 7000 Jahren auf unterschiedlichen Zeitskalen miteinander vergleichen konnten.

    „Wir haben zunächst einmal festgestellt, dass die natürlichen Schwankungen der Meerestemperaturen überraschend groß sind und um so stärker waren, je länger die analysierten Zeiträume sind“, so ein erstes Fazit der beiden Wissenschaftler. In einem zweiten Schritt haben sie dann rund 20 Klimamodelle in mehr als 100 Testläufen untersucht um festzustellen, wie gut die Modelle diese Temperaturschwankungen simulieren können. Ergebnis: Über Zeiträume von Jahren und Jahrzehnten stimmten Mess- bzw. Klimaarchivdaten und Modellläufe recht gut überein. Doch je länger die Zeitskalen, desto größer wurde die Diskrepanz - am stärksten in tropischen Meeresregionen. Auf tausendjähriger Zeitskala unterschätzten gängige Klimamodelle die aus den Klimaarchiven rekonstruierten Schwankungen der Meeresoberflächentemperaturen um den Faktor 50.

    „Theoretisch gibt es nun zwei denkbare Erklärungen“, so Thomas Laepple. „Entweder liefern die Klimaarchive keine verlässlichen Temperaturdaten, oder die Klimamodelle unterschätzen die Variabilität des Klimas. Vielleicht stimmt auch beides ein bisschen.“ Da das Ergebnis auf mehreren unabhängigen Klimaarchiven und Korrekturmethoden beruht, glaubt Laepple, dass das Problem eher bei den Modellen liegt.

    „Wir müssen die Vorhersagen, wie stark das Klima regional schwanken kann, wahrscheinlich korrigieren“, ist Thomas Laepple aufgrund seiner Forschungsergebnisse überzeugt. „Angesichts der enormen Mengen von Treibhausgasen, die in die Atmosphäre abgegeben werden, können wir uns sicher sein, dass es global wärmer wird. Aber die Bandbreite von Veränderungen, auf die wir zusteuern, ist wahrscheinlich wesentlich größer, als wir sie uns derzeit vorstellen.“ Denn die natürlichen Schwankungen, die den Trend zur Erwärmung überlagern, zeigen immer in beide Richtungen: Temperaturen können in einer bestimmten Region im Zeitraum von Jahrzehnten oder einem Jahrhundert weniger oder stärker steigen als Klimamodelle es derzeit im globalen Mittel prognostizieren.

    Weil es sich hierbei um eine zentrale Frage für die Prognose künftiger Klimabedingungen auf der Erde handelt, leitet der Potsdamer Physiker seit etwa einem Jahr eine eigene Forschungsgruppe, die sich schwerpunktmäßig mit diesem Thema beschäftigt. Sie trägt den Namen „ECUS - Estimating climate variability by quantifying proxy uncertainty and synthesizing information across archives“.

    „Wir stecken“, so Laepple, „mitten in einem Experiment, das sich nicht zurückdrehen lässt, das wir aber immer noch zu grob verstehen, um auf längeren Zeitskalen regional eindeutige Aussagen zu finden. Leider müssen wir mit dieser Unsicherheit wohl noch eine Weile leben.“

    Informationen für Redakteure/Medienvertreter:

    +++Achtung: Sperrfrist Montag, 10. November 2014, 21 Uhr MEZ+++

    Die Studie erscheint in der Woche ab dem 10. November 2014 (46. Kalenderwoche) unter folgendem Titel in der Online „Early Edition“ des Fachmagazins Proceedings of the National Academy of Sciences (PNAS):
    Thomas Laepple und Peter Huybers: Ocean surface temperature variability: Large
    model–data differences at decadal and longer periods. DOI: 10.1073/pnas.1412077111 (Link: www.pnas.org/cgi/doi/10.1073/pnas.1412077111 oder in der Online Early Edition unter http://www.pnas.org/content/early/recent)

    Ihr wissenschaftlicher Ansprechpartner am Alfred-Wegener-Institut ist Dr. Thomas Laepple (Tel: 0177-2398233, E-Mail: Thomas.Laepple@awi.de).

    In der AWI-Pressestelle steht Ihnen Ralf Röchert (Tel: 0471-48 31-1680, E-Mail: medien@awi.de) für Rückfragen zur Verfügung.

    Folgen Sie dem Alfred-Wegener-Institut auf Twitter (https://twitter.com/#!/AWI_de) und Facebook (www.facebook.com/AlfredWegenerInstitut) . So erhalten Sie alle aktuellen Nachrichten sowie Informationen zu kleinen Alltagsgeschichten aus dem Institutsleben.

    Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren und hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.


    Images

    Wissenschaftler analysieren einen Sedimentkern
    Wissenschaftler analysieren einen Sedimentkern
    Foto: Thomas Ronge, Alfred-Wegener-Institut.
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Geosciences, Oceanology / climate
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).