idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/19/2016 17:00

Menschen können einzelnes Photon sehen

Dr. Heidemarie Hurtl IMP Communications
IMP - Forschungsinstitut für Molekulare Pathologie GmbH

    Forscher am Wiener Institut für Molekulare Pathologie (IMP) und an der Rockefeller University in New York wiesen erstmals nach, dass Menschen ein einzelnes Photon wahrnehmen können. Für ihre Experimente verwendeten sie eine Quanten-Lichtquelle und kombinierten sie mit einem ausgeklügelten psycho-physikalischen Ansatz. Das Wissenschaftsjournal “Nature Communications” veröffentlicht die Ergebnisse in seiner aktuellen Ausgabe.

    Trotz zahreicher Studien, die seit über siebig Jahren zu diesem Thema durchgeführt wurden, konnte die absolute Untergrenze der menschlichen Sehfähigkeit bisher nicht mit Sicherheit bestimmt werden. Aus älteren Untersuchungen weiß man, dass dunkel-adaptierte Versuchspersonen Lichtblitze wahrnehmen können, die aus fünf bis sieben Photonen bestehen. Ob allerdings ein einzelnes Photon sichtbar ist, blieb lange Zeit ungeklärt.

    Ein interdisziplinäres Team unter der Leitung des Quantenphysikers Alipasha Vaziri konnte diese Frage nun in aufwändigen Versuchsreihen positiv beantworten. Vaziri ist Associate Professor und Leiter des Laboratory of Neurotechnology & Biophysics an der Rockefeller University und leitet gleichzeitig eine Arbeitsgruppe am IMP in Wien, wo die Experimente mit freiwilligen Probanden durchgeführt wurden.

    Erstaunliche Präzision trotz widriger Verhältnisse

    “Wir konnten erstmals zeigen, dass das menschliche Auge tatsächlich imstande ist, ein einzelnes Photon zu erkennen”, erklärt Alipasha Vaziri. “das ist wirklich bemerkenswert und zeigt, bis zu welch erstaunlicher Effizienz die Evolution die Empfindlichkeit der Sinnesorgane vorantreiben kann, in diesem Fall bis zur Einheit der physikalischen Größe selbst.”

    Was den Physiker besonders fasziniert: „Hier trifft ein Photon, die kleinste Einheit des Lichts, auf ein biologisches System, bestehend aus Milliarden von Zellen. Das extrem schwache Signal durchläuft mehrere Schritte biologischer Singnalverarbeitung bis hin zur bewussten Wahrnehmung und geht trotz aller möglichen Quellen des Rauschens nicht verloren. Zu allem Überfluss ist die Umgebung warm und feucht – normalerweise ein wahrer Albtraum für Messungen auf der Quantenebene. Jeder von Menschen gebaute Detektor müsste stark gekühlt und sorgfältig abgeschirmt werden, um solche Ergebnisse zu liefern.”

    Quanten-Lichtquelle erzeugt verschränkte Photonen

    Frühere Versuche waren daran gescheitert, dass weder die ausgereifte Technologie zur Verfügung stand noch die passenden psycho-physikalischen Ansätze. Vaziri: “Es ist nicht einfach, Licht zu erzeugen, das aus genau einem oder einer definierten Anzahl von Photonen besteht. In Licht aus klassischen Quellen ist die Photonenenzahl statistisch verteilt. Durch Dimmen kann man nur die mittlere Photonenzahl eines Lichtpulses verringern, die exakte Anzahl ist nicht bestimmbar.”

    Das Fehlen geeigneter Lichtquellen war demnach eine große Herausforderung bei der Entwicklung des Versuchsansatzes. Die Forscher lösten das Problem, indem sie eine Lichtquelle konstruierten, die bisher nur im Bereich der Quantenoptik und Quanteninformation zum Einsatz kam. Das Prinzip basiert auf der sogenannten spontanen parametrischen Fluoreszenz, bei der ein energiereiches Photon in einem optischen Kristall spontan in zwei verschränkte Photonen mit niedrigerer Energie zerfällt, wobei die Summe der Energien der beiden Photonen der des ursprünglichen entspricht. Im Versuch wurde jeweils eines der Photonen zum Auge der Versuchsperson geleitet, während das andere gleichzeitig auf einen Detektor traf.

    „Das Set-up dieser Kamera war eine harte Nuss“, erzählt Co-Erstautor Jonathan Tinsley, der als Master-Student einen Teil der Experimente durchführte. „Außerdem mussten wir für die Versuche spezielle Dunkelkammern bauen, die Licht und Geräusche perfekt abschirmten.“ Insgesamt wurde etwa neun Monate an dem Versuchsaufbau gearbeitet.

    Erster Hinweis auf Wahrnehmung einzelner Photonen

    Für die Auswertung der Versuche wählten die Forscher ein Protokoll, das in diesem Zusammenhang erstmals zum Einsatz kam. Sie bedienten sich der Methode der erzwungenen Wahl (two-alternative forced-choice, 2AFC), bei der die Probanden bei jedem Durchgang aus zwei Alternativen wählen müssen. Konkret mussten sich die Versuchspersonen zwischen zwei Zeitintervallen entscheiden, von denen nur in einem ein Photon aufblitzte. Mehr als 30 000 solcher Durchgänge wurden schließlich ausgewertet und zeigten mit statistischer Signifikanz, dass einzelne Photonen vom menschliche Auge wahrgenommen werden können.

    Neben dieser Erkenntnis lieferten die Versuche ein weiteres unerwartetes Ergebnis: die Chance, ein Photon wahrzunehmen, stieg an, wenn kurz zuvor bereits ein Photon ins Auge eingetroffen war. In Folgeexperimenten wollen die Forscher klären, wie dieses Phänomen zustande kommt. Daneben eröffnen sich zahlreiche weitere Fragen: Wie können biologische Systeme derartige Empfindichkeit und Präzision entwickeln? Wie werden die schwachen Signale aus dem Hintergrundrauschen herausgefiltert? Sind die beobachteten Phänomene auf den Sehsinn beschränkt oder liefern sie allgemeine Erkenntnisse zur Signalverarbeitung in Lebewesen? Alipasha Vaziri und sein Team werden diesen Fragen in den kommenden Jahren auf den Grund gehen.

    * * * * * * * * * * * * * * * * *

    Originalpublikation
    Jonathan N. Tinsley, Maxim I. Molodtsov, Robert Prevedel, David Wartmann, Jofre Espigulé-Pons, Mattias Lauwers and Alipasha Vaziri: Direct Detection of a Single Photon by Humans. Nature Communications, 19 July, 2016. DOI: 10.1038/ncomms12172.

    Pressekontakt IMP
    Dr. Heidemarie Hurtl
    IMP Communications
    Research Institute of Molecular Pathology
    +43 (0)1 79730 3625
    hurtl@imp.ac.at

    Pressekontakt Rockefeller University
    Zach Veilleux
    Communications and Public Affairs
    The Rockefeller University
    +1-212-327-8982 o
    +1-347-978-4723 m
    zveilleux@rockefeller.edu


    Images

    Artist’s interpretation of an entangled photon-pair entering the human eye
    Artist’s interpretation of an entangled photon-pair entering the human eye
    IMP
    None


    Criteria of this press release:
    Journalists, all interested persons
    Biology, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).