idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/07/2017 18:00

Stabile Quantenbits

Julia Wandt Stabsstelle Kommunikation und Marketing
Universität Konstanz

    Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

    Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein stabiles Quantengatter für Zwei-Quantenbit-Systeme aus Silicium. Das Quantengatter ist in der Lage, alle notwendigen Grundoperationen des Quantenrechners auszuführen. Als grundlegende Speichereinheit („Quantenbit“) dient der sogenannte Elektronenspin von einzelnen Elektronen in Silicium. Die Forschungsergebnisse sind im Wissenschaftsjournal Science in der Online-Ausgabe First Release vom 7. Dezember 2017 veröffentlicht und erscheinen später in der Druckausgabe.

    Bis der erste Quantencomputer in den Kaufhäusern stehen wird, werden noch einige Jahre ins Land gehen. Schon heute zeichnet sich aber ab, dass mit dem Quantencomputer ein großer Entwicklungssprung der Computertechnologie ansteht. Der Quantenrechner wird leistungsfähiger sein und Probleme lösen können, an denen klassische Computer scheitern. Allerdings reagiert der Quantencomputer weitaus empfindlicher auf Störungen von außen als ein klassischer Rechner. Ein vorrangiges Ziel der Forschung ist also, stabile „Quantengatter“ – so heißt das grundlegende „Schaltsystem“ des Quantencomputers – zu schaffen. Wissenschaftlern der Universität Konstanz, der Princeton University und der University of Maryland ist es nun gelungen, stabile Quantengatter für Zwei-Quantenbit-Systeme zu erstellen. Ihr Quantengatter nutzt einzelne Silicium-Elektronen als Informationsspeicher („Quantenbit“) und kann die Interaktion von zwei Quantenbits präzise steuern und auslesen. Damit ist das Quantengatter in der Lage, alle notwendigen Grundoperationen des Quantenrechners zu vollziehen.

    Vom Elektron zum Quantenbit

    So wie ein klassischer Digitalrechner mit dem „Bit“ die Zustände Null und Eins als Grundeinheit aller Rechenprozesse verwendet, so braucht auch ein Quantencomputer eine grundlegende Speichereinheit, das Quantenbit. Dieses verfügt aber neben der Null und der Eins über weitere Zustände und ist daher sehr viel komplexer in seiner Umsetzung als ein einfaches Digitalsystem. In der Forschung gibt es mehrere Ideen, wie ein Quantenbit technisch realisiert werden könnte, beispielsweise über Ionen oder supraleitende Systeme. Die Forscher aus Konstanz, Princeton und Maryland nutzen hingegen den Elektronenspin im Halbleitermaterial Silicium als Grundlage des Quantenbits, also den Eigendrehimpuls eines einzelnen Elektrons. Die Drehrichtung des Elektrons entspricht der Null und Eins des digitalen Bit, wobei der genaue Quantenzustand des Elektrons weitere Information verkörpern kann, die über die bloße Null und Eins hinausgeht.

    Eine erste Leistung der Forscher war daher, aus den Milliarden von Atomen eines Silicium-Stücks ein einzelnes Elektron herauszulösen. „Das ist eine extreme Leistung, die da von unseren Kollegen aus Princeton vollbracht wurde“, schildert der Konstanzer Physiker Prof. Dr. Guido Burkard, der die theoretische Forschung in Konstanz koordinierte. Die Forscher nutzen eine Kombination aus elektromagnetischer Anziehung und Abstoßung, um ein einzelnes Elektron aus dem Elektronenverbund zu separieren. Die herausgelösten Elektronen werden anschließend punktgenau aufgereiht und jeweils in eine Art „Mulde“ eingebettet, wo sie in einem Schwebezustand gehalten werden.

    Die nächste Herausforderung war, ein System zu entwickeln, mit dem der Drehimpuls der einzelnen Elektronen kontrolliert werden kann. Die Konstanzer Physiker um Guido Burkard und Maximilian Russ haben hierfür ein Verfahren entwickelt: An jedes Elektron wird jeweils eine Nano-Elektrode angelegt. Mittels eines sogenannten Magnetfeldgradienten können die Physiker ein ortsabhängiges Magnetfeld schaffen, mit dem sich die Elektronen einzeln ansteuern lassen. Die Forscher können dadurch den Drehimpuls der Elektronen steuern. Sie haben damit stabile Ein-Quantenbit-Systeme geschaffen, mit denen Information in Form von Elektronspins gespeichert und ausgelesen werden kann.

    Der Schritt zum Zwei-Quantenbit-System

    Ein Quantenbit allein reicht jedoch noch nicht aus, um das grundlegende Schaltsystem eines Quantencomputers zu erzeugen – hierfür sind zwei Quantenbits nötig. Der entscheidende Schritt zum Zwei-Quantenbit-System bestand für die Konstanzer Forscher darin, die Zustände zweier Elektronen miteinander zu koppeln. Durch diese Verknüpfung lassen sich basale Schaltsysteme konstruieren, mit denen alle Grundoperationen des Quantenrechners ausgeführt werden können. Beispielsweise lässt sich das System so programmieren, dass sich ein Elektron nur genau dann dreht, wenn sein benachbartes Elektron einen Spin in eine vorherbestimmte Richtung aufweist.

    Die Konstanzer Wissenschaftler mussten folglich ein stabiles System schaffen, um die Spins zweier einzelner Elektronen miteinander zu verknüpfen. „Das war der wichtigste und schwierigste Teil unserer Arbeit“, erzählt Guido Burkard, der das Verfahren gemeinsam mit Maximilian Russ, einem Mitarbeiter seiner Arbeitsgruppe, entwarf und plante. Sie entwickelten ein Schaltsystem, das die Drehimpulse von zwei Elektronen in gegenseitiger Abhängigkeit koordiniert. Zwischen den beiden „Mulden“, in denen die Silicium-Elektronen schweben, wird eine weitere Nano-Elektrode angebracht. Diese steuert die Schaltung der beiden Elektronenspins. Damit gelang es den Physikern, eine stabile und funktionsfähige Grundrecheneinheit für einen Quantencomputer zu realisieren. Die Fehlersicherheit liegt bei über 99 Prozent beim einzelnen Quantenbit und bislang rund 80 Prozent bei der Interaktion zweier Quantenbits – wesentlich stabiler und präziser als bisherige Versuche.

    Silicium – ein „ruhiges Material“

    Ausgangsmaterial des Quantengatters ist Silicium. „Ein magnetisch sehr ruhiges Material mit einer geringen Anzahl eigener Kernspins“, fasst Guido Burkard die Vorteile von Silicium zusammen. Wichtig bei dem gewählten Material ist, dass seine Atomkerne nicht zu viele Spins, das heißt Eigendrehimpulse, mit sich bringen, welche die Quantenbits stören könnten. Silicium weist mit einem Anteil von rund fünf Prozent eine extrem niedrige Spin-Aktivität der Atomkerne auf und ist daher in besonderem Maße geeignet. Ein weiterer Vorteil: Silicium ist das Standardmaterial der Halbleitertechnologie und entsprechend gut erforscht, so dass die Wissenschaftler von langjährigen Erfahrungen mit dem Material profitieren.

    Originalpublikation: D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor, G. Burkard, J. R. Petta, Quantum CNOT Gate for Spins in Silicon, Science 07 December 2017

    Faktenübersicht:

    - Meilenstein für die Entwicklung des Quantencomputers – aktuelle Veröffentlichung im Wissenschaftsjournal Science, in der Online-Ausgabe First Release vom 7. Dezember 2017

    - Physiker aus Konstanz, Princeton und Maryland entwickeln ein stabiles Quantengatter für Zwei-Quantenbit-Systeme aus Silicium.

    - Dieses Quantengatter kann alle notwendigen Grundoperationen des Quantencomputers ausführen.

    - Als Informationsspeicher („Quantenbit“) nutzt das Quantengatter den Elektronenspin (Eigendrehimpuls eines Elektrons) von einzelnen Silicium-Elektronen.

    - Die Fehlersicherheit liegt bei über 99 Prozent beim einzelnen Quantenbit und bislang rund 80 Prozent bei der Interaktion zweier Quantenbits.

    - Beteiligte Einrichtungen: Universität Konstanz, Princeton University (USA), National Institute of Standards and Technology (USA), University of Maryland (USA)

    Hinweis an die Redaktionen:
    Ein Bild kann im Folgenden heruntergeladen werden: https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2017/Bilder/Burkard_Quanteng...

    Bildunterschrift: Quantengatter aus zwei Silicium-Elektronen. Die Drehimpulse der beiden Elektronen werden durch zwei Nano-Elektroden (VL und VR) kontrolliert. Eine dritte Nano-Elektrode (VM) koordiniert die Interaktion beider Elektronen.

    Kontakt:
    Universität Konstanz
    Kommunikation und Marketing
    Telefon: + 49 7531 88-3603
    E-Mail: kum@uni-konstanz.de

    - uni.kn


    Images

    Criteria of this press release:
    Journalists
    Chemistry, Information technology, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).