idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/13/2018 14:39

One light pulse escapes from the other while changing its color

Jasmine Ait-Djoudi Presse- und Öffentlichkeitsarbeit, Pressestelle
Technische Universität Hamburg-Harburg

    Scientists from Hamburg University of Technology (TUHH), ITMO-University St. Petersburg, Menoufia Uni-versity, University of York, University of St. Andrews, Tyndall-Institute Cork, Sun Yat-sen University Guang-zhou, and Helmholtz-Zentrum Geesthacht realized a novel effect in silicon based optical waveguide chips which were particularly designed and fabricated for this nanophotonic experiment. In a special dispersion engineered photonic crystal waveguide a pump light pulse of duration of only six trillionths of a second chases a second slower signal light pulse.

    When the pump pulse reaches the signal pulse, upon interaction, the signal pulse accel-erates, changes its frequency, respectively its color, and finally escapes from the pump pulse in forward direction.

    This novel effect is related to the “event horizon” concept which theoretical physicists use to describe the vicini-ty of black holes where this limit marks the “point of no return” of photons. No light particle inside can cross this event horizon to reach the outside world and all these photons are inevitably consumed by the black hole. Such walls for light and changes in the light velocity and color are non-existent in our everyday lives and can be ob-served under very special conditions, only.

    How does this work?
    The pump pulse generates free electrons in the silicon which creates a fast forward moving front. Since the charge carriers live long compared to the pump pulse duration they are staying behind the propagating front as a trail. The conditions have been chosen by careful design of the waveguide such that the signal pulse cannot penetrate into the space behind the front and escapes in forward direction, instead. Since both the frequency and the wave number of the signal are changed, which is quite unusual, the effect is called an “indirect” photonic transition, which is now theoretically described, numerically modelled and experimentally verified.

    Under the leadership of the Hamburg based researchers scientific insights of fundamental importance have been gained which, in addition, are crucial for applications in ultra-fast optical telecommunications. As a result of the particular waveguide design, very strong effects can be realized with comparatively small pump power which makes this novel technique particularly attractive for “on-chip” frequency conversion and for all-optical switch-ing.

    The work was published on 13.04.2018 in Nature Communications, one of the highest prestigious international scientific journals.
    Publication:
    Online: https://www.nature.com/articles/s41467-018-03862-0

    Reflection from a free carrier front via an intraband indirect photonic transition, Mahmoud A. Gaafar, Dirk Jalas, Liam O’Faolain, Juntao Li, Thomas F. Krauss, Alexander Yu. Petrov, and Manfred Eich,
    Nature Communications 9, 1447 (2018), doi 10.1038/s41467-018-03862-0

    Further information:
    Prof. Dr. Manfred Eich
    Technische Universität Hamburg-Harburg (TUHH), Institut für Optische und Elektronische Materialien,
    Eißendorfer Straße 38, D-21073 Hamburg
    and
    Institut für Werkstoffforschung, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht, D-21502, Germany,
    Tel +49 40 42878 3147
    E-Mail: m.eich@tuhh.de,
    Website: www.tuhh.de/alt/oem/home.html


    Images

    Criteria of this press release:
    Journalists
    Electrical engineering, Environment / ecology, Materials sciences
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).