idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/05/2019 17:04

Es geht auch ohne Arrestin

Dr. Uta von der Gönna Presse- und Öffentlichkeitsarbeit
Universitätsklinikum Jena

    In einem Modell der Zellmigration von Interneuronen konnten Pharmakologen des Universitätsklinikums Jena zeigen, dass dieser von G-Protein-gekoppelten Rezeptoren gesteuerte vorgeburtliche Zellwanderungsprozess nahezu unverändert abläuft, auch wenn kein Beta-Arrestin gebildet werden kann. Entscheidend ist vielmehr, dass weder zu wenig noch zu viel des Chemokins vorliegt, das den Wanderungsprozess steuert. Mit ihrer jetzt im Fachjournal Cell Reports veröffentlichten Studie rütteln die Wissenschaftler an der Lehrmeinung, dass das Adapterprotein Beta-Arrestin unentbehrlich ist für die Rezeptorfunktion.

    Um ihre Funktion im Körper zu erfüllen, müssen sich manche Zellen von einem Ort zum anderen bewegen, zum Beispiel um bei einer Immunreaktion mitzuwirken oder bei der Neubildung von Blutgefäßen nach einer Verletzung. Sie werden von Botenstoffen, den Chemokinen, an ihren Einsatzort gelockt. Das Zusammenspiel dieser kleinen Signalproteine mit hochspezifischen Rezeptoren in den Zellmembranen wirkt wie ein Navigationssystem für die Zellwanderung.

    Die Arbeitsgruppe von Professor Ralf Stumm am Institut für Pharmakologie und Toxikologie des Universitätsklinikums Jena erforscht die Wanderung hemmender Nervenzellen in der Großhirnrinde. Dieser Prozess ist ein wichtiger Bestandteil der vorgeburtlichen Hirnreifung. Als Wegweiser für die Interneuronen fungiert dabei das Chemokin CXCL12, das vom Rezeptor CXCR4 erkannt und in ein Signal für die Zellbewegung übersetzt wird. Dieser Rezeptor gehört zur großen Gruppe der G-Protein-gekoppelten Rezeptoren, die ihre Signale über die namensgebenden G-Proteine in die Zelle weitergeben. Die mehr als 800 Mitglieder zählende Rezeptorfamilie spielt eine zentrale Rolle bei der Zellkommunikation und der Verarbeitung von Schmerz– und Sinnesreizen. Etwa 30 Prozent aller Medikamente, zum Beispiel Opioide, Betablocker oder Neuroleptika, zielen auf diese Rezeptoren, die deshalb im besonderen Fokus der Arzneimittelforschung liegen.

    Rezeptorenpaar steuert Zellwanderung

    „Das Besondere an der Wanderung der Interneuronen ist, dass für die richtige Funktion ihres Navigationssystems ein zweiter Rezeptor notwendig ist“, erklärt Ralf Stumm. Dieser mit ACKR3 bezeichnete Rezeptor gehört wegen seiner chemischen Struktur zwar mit zur Großfamilie, kann aber keine G-Proteine aktivieren und ist deshalb atypisch. Er transportiert das Chemokin ins Zellinnere und räumt quasi hinter dem Interneuron auf. Damit sorgt er für den Unterschied in der Konzentration des Chemokins, der die Richtung der Zellwanderung bestimmt. Ralf Stumm: „Aus Zellkulturversuchen weiß man, dass die Ankopplung von Phosphatgruppen an G-Protein-gekoppelte Rezeptoren für deren Regulation wichtig ist. Ob dies auch auf die neu entdeckten atypischen Rezeptoren wie ACKR3 zutrifft, war bislang unbekannt. Es wird vermutet, dass das Adapterprotein Beta-Arrestin sich an diese Gruppen heftet und so die Aufnahme des Rezeptormoleküls ins Zellinnere ermöglicht. Zudem soll es unabhängig vom G-Protein Signale ins Zellinnere leiten“. Für den atypischen Rezeptor müsste Beta-Arrestin also entscheidend sein. Aber auch für die G-Protein-gekoppelten Rezeptoren gilt Beta-Arrestin vielen Wissenschaftlern neben dem G-Protein als wichtigster Signalpartner.

    In einer jetzt im Fachjournal Cell Reports veröffentlichten Studie, die im Rahmen des Transregio „ReceptorLight“ von der DFG gefördert wurde, analysierten die Jenaer Pharmakologen die Steuerung der Interneuronen-Wanderung erstmals im lebenden Organismus – und zeigten, dass es ohne beta-Arrestin geht. Dazu untersuchten sie die vorgeburtliche Hirnentwicklung von Mäusen, die kein Beta-Arrestin bilden konnten. „Die Interneuronen waren ähnlich verteilt wie in der Großhirnrinde von Wildtyp-Tieren, und beide Rezeptoren CXCR4 und ACKR3 funktionierten in den Zellen fast normal“, so Friederike Saaber, die Erstautorin der Studie.

    Unbekannte Adapterproteine?

    Um das Zusammenspiel der beiden Rezeptoren näher zu beleuchten, nahmen die Wissenschaftler weitere Veränderungen vor. Sie modifizierten den atypischen Rezeptor so, dass er keine Phosphatgruppen aufnehmen konnte. „Dadurch konnte das Chemokin nicht mehr in die Zellen geschleust werden, es reicherte sich im Gewebe an und überreizte den anderen Rezeptor CXCR4, so dass dieser in der Zelle abgebaut wurde und gar nicht mehr auf den Botenstoff reagieren konnte“, beschreibt Friederike Saaber die erheblichen Funktionsstörungen. In der Folge häuften sich die Neuronen in den falschen Schichten der Großhirnrinde an. Ganz ähnlich sahen die Störungen aus, wenn kein Chemokin oder zu viel davon gebildet wurde.

    Die richtige Menge des Botenstoffs ist also entscheidend für die von Chemokinen gesteuerte Zellwanderung. Ralf Stumm: „Es ist erstaunlich, dass ein derart komplexer Prozess von den Phosphatgruppen des atypischen Rezeptors abhängt, aber ohne Beta-Arrestin funktioniert. Unsere Arbeit eröffnet die Suche nach bislang unbekannten Adapterproteinen, die an den Phosphatgruppen der Rezeptoren regulatorisch angreifen.“


    Contact for scientific information:

    Prof. Dr. Ralf Stumm, Friederike Saaber
    Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena
    Tel.: 03641/9325680, 9325679
    E-Mail: Ralf.Stumm@med.uni-jena.de, Friederike.Saaber@med.uni-jena.de


    Original publication:

    Saaber F, et al. ACKR3 regulation of neuronal migration requires ACKR3 phosphorylation but not beta-arrestin. Cell Rep. 2019, DOI: 10.1016/j.celrep.2019.01.049


    Images

    Friedericke Saaber vom Uniklinikum Jena untersucht, wie die Entwicklung des Gehirns vor der Geburt gesteuert wird.
    Friedericke Saaber vom Uniklinikum Jena untersucht, wie die Entwicklung des Gehirns vor der Geburt g ...
    Foto: Uta von der Gönna/UKJ
    None

    Zellwanderung in der Großhirnrinde der embryonalen Maus: Interneurone (dunkelrote Zellen) erspüren den Botenstoff CXCL12 (rot) und folgen ihm auf definierten Routen.
    Zellwanderung in der Großhirnrinde der embryonalen Maus: Interneurone (dunkelrote Zellen) erspüren d ...
    Grafik: Carolin Berg/UKJ
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).