idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/04/2019 08:49

Rätsel um harte Muschelschalen geknackt

Dr. Susanne Langer Kommunikation und Presse
Friedrich-Alexander-Universität Erlangen-Nürnberg

    Perlmutt fasziniert den Menschen seit jeher. Es gibt Muschelschalen ihr schillerndes Aussehen und schützt das Tier vor Fressfeinden und anderen Bedrohungen. Seit über 80 Jahren rätseln Wissenschaftlerinnen und Wissenschaftler, woher die außergewöhnliche Härte von Perlmutt stammt – schon lange wird es als eines der zähesten Materialen der Welt gepriesen. Nun hat ein internationales Team aus den Bereichen Material- und Geowissenschaften sowie Biologie der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), der University of Michigan, der Macquarie University in Sydney und der Université Bourgogne Franche-Comté das Geheimnis gelüftet.

    Forschende kennen die Grundlagen von Perlmutt seit Jahrzehnten – es besteht aus mikroskopisch kleinen „Ziegelsteinen“ eines Minerals namens Aragonit, das aus einfachem Kalk besteht, und einem „Mörtel“ aus organischem Material. Diese Anordnung verleiht zwar generell Festigkeit, aber Perlmutt ist weitaus widerstandsfähiger als seine einzelnen Komponenten vermuten lassen. In ihrem Experiment übte das Team unter einem Elektronenmikroskop auf die Schalen Druck aus und beobachte in Echtzeit, was passierte: Die Struktur verformte sich komplexer als gedacht.

    „Zentral für die von uns beobachteten Eigenschaften ist eine Kompositstruktur auf der Nanoskala, die das keramische Material Kalk eng mit Proteinen und anderen organischen Bestandteilen verwebt. Das gelingt der Muschel, indem sie kleinste Kalkpartikel zu Plättchen zusammenlagern lässt, ein Prozess, den wir derzeit genau untersuchen, um die fabelhaften Eigenschaften eines Tages auch synthetisch abbilden zu können“, erklärt Prof. Dr. Stephan Wolf, Juniorprofessor für Biomimetische Materialen und Prozesse am Lehrstuhl für Glas und Keramik der FAU.

    Bildlich gesprochen funktioniert das so: Die „Ziegelsteine“ sind tatsächlich mehrseitige „Plättchen“, die nur wenige hundert Nanometer groß sind. In der Regel bleiben diese Plättchen getrennt, in Schichten angeordnet und von einer dünnen Schicht organischen „Mörtels“ gepolstert. Bei Belastung der Muschelschalen wird der „Mörtel“ jedoch beiseite gequetscht, die „Plättchen“ verhaken sich so sehr, dass sie gemeinsam die Belastung tragen und so daran nicht zerbrechen. Wird der Druck weggenommen, springt die Struktur in ihre alte Form zurück, ohne an Festigkeit oder Elastizität zu verlieren. Diese Eigenschaft ist außergewöhnlich, denn: Selbst die fortschrittlichsten Materialien, die von Menschen entworfen wurden, können das nicht. Kunststoffe können beispielsweise durch einen Aufprall zurückspringen, verlieren jedoch jedes Mal etwas an Festigkeit. Perlmutt hingegen verlor in den Experimenten bei wiederholten Schlägen kaum etwas von seiner Widerstandsfähigkeit. „Es ist unglaublich, wie eine Muschel – die nicht gerade für ihre Intelligenz gerühmt wird – so ein komplexes Material generiert, das über viele Längenskalen strukturiert ist”, sagt Prof. Hovden von der University of Michigan und Leiter der Studie.

    Ihre Ergebnisse erlauben es Materialwissenschaftlerinnen und -wissenschaftlern, eine neue Generation von bruchfesten keramischen Materialien zu entwickeln, die widerstandsfähig auf Belastungen reagieren, Anforderungen wie sie für Alltags- oder Spezialanwendungen in der Medizintechnik auftreten, wie zum Beispiel für Zahn- und Knochenimplantate.


    Contact for scientific information:

    Weitere Informationen:
    Prof. Dr. Stephan E. Wolf
    Tel.: 09131/85-27565
    stephan.e.wolf@fau.de


    Original publication:

    *Das Paper ist online unter: Gim, Jiseok, Noah Schnitzer, Laura M. Otter, Yuchi Cui, Sébastien Motreuil, Frédéric Marin, Stephan E. Wolf, Dorrit E. Jacob, Amit Misra, and Robert Hovden. 2019. “Nanoscale Deformation Mechanics Reveal Resilience in Nacre of Pinna Nobilis Shell.” Nature Communications 10 (1): 4822. https://doi.org/10.1038/s41467-019-12743-z.


    Images

    FAU-Wissenschaftler haben zusammen mit internationalen Kolleginnen und Kollegen das Rätsel um die Härte von Perlmutt (im Bild das Perlmutt einer Abalone-Schnecke)  geknackt.
    FAU-Wissenschaftler haben zusammen mit internationalen Kolleginnen und Kollegen das Rätsel um die Hä ...
    Bild: Stephan E. Wolf
    None


    Criteria of this press release:
    Journalists
    Biology, Geosciences, Materials sciences
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).