idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/02/2020 12:35

Finding cortisone alternatives with fewer side effects

Pressestelle Corporate Communications Center
Technische Universität München

    Many people use cortisone of a regular basis. It is used for treating rheumatism, asthma, multiple sclerosis, or even COVID-19. Steroidal medication such as cortisone is highly effective but also possesses severe side effects. Henriette Uhlenhaut, professor at Technical University of Munich (TUM), and her team are examining the beneficial effects of cortisone in order to lay the groundwork for the development of similar drugs with fewer side effects.

    A group of scientists around Henriette Uhlenhaut, Professor for Metabolic Programming at TUM School of Life Sciences in Freising-Weihenstephan and researcher in the field of Molecular Endocrinology at Helmholtz Zentrum München is working with so-called glucocorticoids. These are steroidal hormones such as cortisone, which are released by the adrenal glands every day before waking up or whenever a person is subjected to stress. These steroids are bound to their glucocorticoid receptor and control not only our body’s immune reaction but also our sugar and fat metabolism.

    As glucocorticoid receptors are so efficient at disabling immune reactions, synthetic steroid medication is among the most prescribed drugs overall and it has been for decades.

    The goal: Finding molecules with anti-inflammatory effects

    “Unfortunately, this useful property leads to severe side effects as one hormone or drug causes different effects in other non-immune cells,” explained the professor. Among these effects are the reduction of muscle mass or the deposition of fat.

    “We still don’t fully understand the effects of steroid compounds,” said Uhlenhaut. With her team, she wants to discover the molecular mechanisms that steroids such as cortisone utilize to stop inflammatory reactions.

    As soon as researchers know how cortisone works, so how it mutes inflammation genes in immune system cells, they can begin looking for molecules that possess the same anti-inflammatory properties as cortisone, but with fewer side effects.

    Common theory refuted

    Until recently, scientists believed that the steroids‘ anti-inflammatory effect was based on protein-to-protein interaction. It was assumed that the glucocorticoid receptor – in other words, the protein that binds these drugs or hormones – would connect to other inflammation inducing proteins without any DNA contact.

    Using a new preclinical model, the team of researchers could now demonstrate that DNA binding is required for these drugs to have an effect; for years, scientists had assumed that this was not the case. Without the glucocorticoid receptor (the protein that binds these drugs or hormones) enabling DNA binding to chromosomes, chromatin or genes, there is no biological effect.

    A milestone for drug development

    “Now we know that DNA binding plays a major role, yet we have not found a way to separate side effects from the desired effects,” explained Prof. Uhlenhaut. Regarding COVID-19, researchers do not have a clear answer either as to why these kinds of treatments are successful. Further research in this area is required.

    Until now, various approaches focused on protein-to-protein contact, which might explain why these have not been successful. As this basic approach can now be discarded, further research regarding drug development of cortisone alternatives can now focus on the DNA.


    Contact for scientific information:

    Prof. Dr. Henriette Uhlenhaut
    Chair for Metabolic Programming
    Technical University of Munich
    TUM School of Life Sciences
    ZIEL – Institute for Food & Health
    Tel.: +49 (0) 8161 71 4322
    henriette.uhlenhaut(at)tum.de


    Original publication:

    Laura Escoter-Torres, Franziska Greulich, Fabiana Quagliarini, Michael Wierer, Nina Henriette Uhlenhaut: Anti-inflammatory functions of the glucocorticoid receptor require DNA binding
    Nucleic Acids Research, July 3, 2020, https://doi.org/10.1093/nar/gkaa565


    More information:

    https://mediatum.ub.tum.de/1559845 (high resolution images)
    https://www.tum.de/nc/en/about-tum/news/press-releases/details/36214/ (press release)


    Images

    Prof. Henriette Uhlenhaut
    Prof. Henriette Uhlenhaut
    A. Heddergott / TUM
    Frei für Berichterstattung über die TU München unter Nennung des Copyrights

    Prof. Henriette Uhlenhaut in the lab
    Prof. Henriette Uhlenhaut in the lab
    A. Heddergott / TUM
    Frei für Berichterstattung über die TU München unter Nennung des Copyrights


    Attachment
    attachment icon Prof. Henriette Uhlenhaut

    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Biology, Medicine, Nutrition / healthcare / nursing
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).