idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/15/2020 15:17

Component Design: Competitive Advantage through Stress Analysis

Anke Zeidler-Finsel Presse- und Öffentlichkeitsarbeit
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

    Components are subject to multi-axial loadings. The typical design approach is based on material specific modelling and suitable tests to identify the parameters of the model. The tests are costly and time consuming. Scientists at the Fraunhofer Institute for Structural Durability and System Reliability LBF have suggested a basic approach to select the necessary tests for reliable modelling.

    Using proposed stress analysis, the available stress states in the components under loadings can be sorted and the volumes of the components under tension and compression can be taken into account. The decision on the necessary tests is taken depending on the relation of the tension and compression loaded volumes. This method leads to reliable component design with minimum experimental costs.

    Tension/Compression Differences

    Common engineering design is based on the HOOKE’s law. The tensile test has become generally accepted for the identification of material data. The tension / compression differences are often neglected in conventional solutions although most construction materials are stiffer in compression as in tension. The neglecting reason is that the additional compression tests cause extra costs.

    Fraunhofer LBF have implemented the method to decide when, in addition to the tensile tests, the compression tests are necessarily required. On the basis of this decision, the simulation tools can be used in accordance with the material. The reliable design solutions for optimized structures can be achieved.

    Stress Analysis

    Proper stress analysis helps in optimizing component design. Fraunhofer LBF’s analysis is based on the sum of the normal stresses or the first invariant of the stress tensor. If this sum is less than zero, the corresponding volume of the component is compressed and vice versa. The next step is to compare tensile and compression loaded volumes.

    Suggested stress analysis enables the choice of the appropriate material model. If the volume of the component under tension is significantly greater as under compression, the standard models without tension / compression differences can be used for design. This avoids further tests.

    The application of the method is shown with the practical example of a cable clamp under relevant loading: Due to biplane symmetry, one fourth of the component is taken for analysis.

    The volumes under tension and compression in the cable clip are identified in simulation. Plots are presented for the sign of first invariant. It is clear that the volume of the component under tension and compression are comparable. In this case, the effect of different material properties at tension and compression is considerable and should be taken into account. In addition to the tensile tests, the compression tests are highly recommended.

    With this analysis, the Fraunhofer LBF supports numerous small and middle-sized entrepreneurs in their competitive. The experimental costs are adjusted to the usage of the component. Simple assignment of loaded components based on the first stress invariant delivers accurate information for utilization of material-specific properties.


    Contact for scientific information:

    Dr.-Ing. Vladimir A. Kolupaev, Vladimir.Kolupaev@lbf.fraunhofer.de
    Dipl.-Ing. (FH) Axel Nierbauer, axel.nierbauer@lbf.fraunhofer.de


    Images

    Criteria of this press release:
    Business and commerce, Journalists
    Chemistry, Materials sciences, Mechanical engineering
    transregional, national
    Research results, Transfer of Science or Research
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).