idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Grafik: idw-Logo

idw - Informationsdienst
Wissenschaft

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/14/2021 17:00

Artificial intelligence helps to find new natural substances

Dr. Ute Schönfelder Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    Bioinformatics team at Friedrich Schiller University Jena develops method that enables fast and confident identification of previously unknown small molecules

    More than a third of all medicines available today are based on active substances from nature and a research team from the University of Jena has developed a procedure to identify small active substance molecules much more quickly and easily. Secondary natural substances that occur in numerous plants, bacteria and fungi can be anti-inflammatory, can ward off pathogens or even prevent the growth of cancer cells. However, making use of the riches provided by nature’s medicine cabinet and identifying new natural substances is time-consuming, costly and labour-intensive. A team of bioinformaticians at Friedrich Schiller University Jena has now developed a method that enables much faster and easier identification of small active substance molecules. The researchers present their method, called COSMIC (Confidence Of Small Molecule IdentifiCations), in the current issue of the renowned journal Nature Biotechnology.

    Millions of structural data items not yet deciphered

    To find out which substances are contained in a biological sample such as a plant extract, a researcher analyses the sample using mass spectrometry. In this process, the molecules are broken down into fragments and their mass is determined. “The CSI:FingerID molecule search engine we developed allows us to search specifically for molecular structures that match these fragments,” says Prof. Sebastian Böcker of the University of Jena. “Whether this search is successful – i.e., whether the search result represents the correct structure – is not something we can distinguish in this way.”

    There are currently huge collections of data with billions of mass spectrometry data items from millions of analyses of biological samples, the vast majority of which have not been identified as to their structure. This is where COSMIC is now coming into play, enabling structures to be deciphered automatically for a large proportion of these as yet unidentified molecules. “To this end, we use machine-learning methods,” explains Martin Hoffmann, lead author of the new publication. “First, the mass spectrum of the sample under examination is compared with the available structural data.” As a result, you get – as in a Google search – a more or less extensive list of possible hits. “Our method now indicates how confident one can be that the hit found in the first place is actually the structure we are looking for,” Hoffmann adds. To do this, COSMIC determines a score that evaluates the quality of the suggested hit and deduces whether it is correct or incorrect.

    New bile acids discovered

    Böcker and his team have been able to demonstrate how well their method really works, in cooperation with colleagues from the University of California, San Diego. They studied mass spectrometry data from the digestive system of mice, searching for as yet unknown bile acids. For this purpose, more than 28,000 theoretically possible bile acid structures were constructed and compared with the measurement data from the microbiome of the mice. The subsequent analysis with COSMIC yielded a total of 11 new, previously completely unknown bile acid structures. Two of these have since been confirmed using specifically synthesised reference samples.

    “This shows, firstly, that our method works reliably,” emphasises Sebastian Böcker. Secondly, COSMIC makes it possible to accelerate substantially the search for new and interesting substances, because the screening can be performed completely automatically, without any manual effort and in a very short time. Böcker expects that in the coming years, it will be possible to clarify thousands of new molecular structures in this way.


    Contact for scientific information:

    Prof. Sebastian Böcker
    Institute of Computer Science of Friedrich Schiller University Jena
    Ernst-Abbe-Platz 2, 07743 Jena, Germany
    Tel.: +49 (0)3641 9-46450
    E-mail: sebastian.boecker@uni-jena.de


    Original publication:

    Hoffmann MA et al. High-confidence structural annotation of metabolites absent from spectral libraries. Nature Biotechnology (2021), https://doi.org/10.1038/s41587-021-01045-9


    Images

    Martin Hoffmann from the University of Jena presents COSMIC (Confidence Of Small Molecule IdentifiCations), a workflow that enables the identification of small molecules faster and easier than previously possible.
    Martin Hoffmann from the University of Jena presents COSMIC (Confidence Of Small Molecule IdentifiCa ...
    Photo: Jens Meyer/Uni Jena


    Criteria of this press release:
    Journalists
    Biology, Information technology
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).