idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.01.2017 15:22

Grundlage für neuartige Solarzellen

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

    Ein interdisziplinäres Forscherteam hat die Grundlagen für einen völlig neuen Typus von Solarzellen entwickelt. Die neue Methode wandelt jenseits der herkömmlichen Wirkmechanismen Infrarotlicht in elektrische Energie um. Der Wirkmechanismus der Festkörper-Solarzelle besteht aus dem Mineral Perowskit und beruht auf sogenannten Polaron-Anregungen. Das sind kombinierte Anregungen von Elektronen und Gitterschwingungen des Festkörpers. Beteiligt an der Entwicklung der neuartigen Methode sind Forscher der Universität Göttingen, des Göttinger Max-Planck-Instituts für biophysikalische Chemie, der Technischen Universität Clausthal und vom Deutschen Elektronen-Synchrotron (DESY) in Hamburg.

    Pressemitteilung
    Nr. 12/2017

    Grundlage für neuartige Solarzellen
    Internationales Wissenschaftlerteam entwickelt neuen Wirkmechanismus für Photovoltaik

    Ein interdisziplinäres Forscherteam hat die Grundlagen für einen völlig neuen Typus von Solarzellen entwickelt. Die neue Methode wandelt jenseits der herkömmlichen Wirkmechanismen Infrarotlicht in elektrische Energie um. Der Wirkmechanismus der Festkörper-Solarzelle besteht aus dem Mineral Perowskit und beruht auf sogenannten Polaron-Anregungen. Das sind kombinierte Anregungen von Elektronen und Gitterschwingungen des Festkörpers. Beteiligt an der Entwicklung der neuartigen Methode sind Forscher der Universität Göttingen, des Göttinger Max-Planck-Instituts für biophysikalische Chemie, der Technischen Universität Clausthal und vom Deutschen Elektronen-Synchrotron (DESY) in Hamburg. Die Ergebnisse sind in der Fachzeitschrift Advanced Energy Materials erschienen.

    „Während in konventionellen Solarzellen die Wechselwirkung von Elektronen mit Gitterschwingungen zu unerwünschten Verlusten führt und daher ein wesentliches Problem darstellt, können diese Polaron-Anregungen in der Perowskit-Solarzelle bei bestimmten Betriebstemperaturen fraktal gebildet und langlebig genug werden, damit ein ausgeprägter photovoltaischer Effekt auftritt“, erläutert Erstautor Dirk Raiser vom MPI für biophysikalische Chemie und vom DESY. „Dies erfordert jedoch einen geordneten Grundzustand der Ladungen, der einer Art Kristallisation der Ladungen entspricht und so starke kooperative Wechselwirkungen der Polaronen ermöglicht.“

    Die untersuchten Perowskit-Solarzellen mussten im Labor auf etwa minus 35 Grad Celsius gekühlt werden, damit der Effekt einsetzte. Voraussetzung für eine praktische Anwendung ist die Realisation geordneter Polaronenzustände bei höheren Temperaturen. „Die vorliegenden Messungen wurden an einem gut charakterisierten Referenzmaterial durchgeführt, um das Prinzip des Effektes zu verdeutlichen. Dafür wurde die tiefe Übergangstemperatur in Kauf genommen“, erläutert Ko-Autorin Prof. Dr. Simone Techert vom Institut für Röntgenphysik der Universität Göttingen, die auch leitende Wissenschaftlerin am MPI für biophysikalische Chemie und am DESY ist.

    Göttinger Materialphysiker arbeiten an einer Modifizierung und Optimierung des Materials, um eine höhere Betriebstemperatur zu erreichen. „Der kooperative Zustand könnte sich unter Umständen auch durch geschickte Anregung mit weiterem Licht vorübergehend einstellen lassen“, sagt Prof. Techert. Sofern eine dieser Strategien erfolgreich ist, könnten zukünftig Solarzellen oder photochemische Energieträger mittels reichlich vorhandener Perowskit-Oxidverbindungen erzeugt werden.

    „Die Entwicklung hocheffizienter und einfach gebauter Festkörper-Solarzellen ist immer noch eine wissenschaftliche Herausforderung, der sich viele Arbeitsgruppen auf der Welt stellen, um die künftige Energieversorgung zu gewährleisten“, betont Forschungsleiter Prof. Dr. Christian Jooß vom Institut für Materialphysik der Universität Göttingen. „Neben der Material- oder Bauoptimierung schon etablierter Solarzellen beinhaltet dies auch die Erforschung neuer grundlegender Mechanismen des lichtinduzierten Ladungstransports und der Umwandlung in elektrische Energie. Auf diese Weise sollte es möglich sein, Solarzellen basierend auf neuen Wirkprinzipien zu entwickeln.“

    Genau dies ist der interdisziplinären Gruppe von Materialphysikern, Theoretikern, chemischen Physikern und Röntgenphysikern nun im Rahmen des Göttinger Sonderforschungsbereichs (SFB) 1073 „Kontrolle der Energiewandlung auf atomaren Skalen“ gelungen. Für die Erforschung der neuartigen Solarzellenfunktion waren dabei ultraschnelle optische und strukturelle Analysemethoden entscheidend, wie sie in aktuellen und früheren Arbeiten zu diesem Thema zum Einsatz kamen.

    Im Zentrum in Göttingen steht dabei die Entwicklung von Materialien, deren Anregungen sich mittels starker Wechselwirkungen steuern lassen. Die Materialentwicklung wird im Rahmen des SFB 1073 durch die theoretischen Arbeiten von Prof. Dr. Peter Blöchl von der Technischen Universität Clausthal intensiv begleitet. Sie erlauben, ein fundamentales Verständnis der neuen Wirkmechanismen zu entwickeln und damit das Design neuer Materialen zielgerichtet durchzuführen.

    Originalveröffentlichung: Dirk Raiser et al. Evolution of hot polaron states with a nanosecond lifetime in manganite. Advanced Energy Materials. DOI: 10.1002/aenm.201602174; http://onlinelibrary.wiley.com/doi/10.1002/aenm.201602174/full

    Hinweis an die Redaktionen:
    Fotos zum Thema haben wir im Internet unter http://www.uni-goettingen.de/de/3240.html?cid=5729 zum Download bereitgestellt.

    Kontaktadresse:
    Prof. Dr. Christian Jooß
    Georg-August-Universität Göttingen
    Fakultät für Physik – Institut für Materialphysik
    Friedrich-Hund-Platz 1, 37077 Göttingen
    Telefon (0551) 39-5303
    E-Mail: jooss@ump.gwdg.de
    Internet: http://www.material.physik.uni-goettingen.de/index.php?site=jooss_info


    Weitere Informationen:

    http://www.uni-goettingen.de/de/3240.html?cid=5729
    http://onlinelibrary.wiley.com/doi/10.1002/aenm.201602174/full


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Kooperationen, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).