idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
11.05.2017 09:34

Elektrostatisches Materialdesign: TU Graz zeigt fundamental neuen Ansatz

Mag. Susanne Eigner Kommunikation und Marketing
Technische Universität Graz

    Forschende des Instituts für Festkörperphysik stellen in Advanced Materials einen radikal neuen Ansatz zur gezielten Gestaltung optischer und elektronischer Eigenschaften von Materialien vor.

    Herkömmlicherweise wird computergestütztes Materialdesign dazu genutzt, um bereits existierende Materialien zu verbessern und weiterzuentwickeln. Simulationen erlauben einen tiefen Einblick in die quantenmechanischen Effekte, die letztendlich die Materialeigenschaften bestimmen. Egbert Zojer geht einen Schritt weiter: Mit seinem Team vom Institut für Festkörperphysik der TU Graz nutzt er Computersimulationen, um ein gänzlich neues Konzept zur Kontrolle elektronischer Materialeigenschaften vorzuschlagen. Vermeintlich störende Einflüsse, die sich aus der regelmäßigen Anordnung polarer Elemente ergeben, nämlich sogenannte kollektive elektrostatische Effekte, nutzt die Gruppe zur gezielten Manipulation von Materialeigenschaften. Dass der radikal neue Ansatz auch für dreidimensionale Materialien funktioniert, demonstriert das Grazer Team in Advanced Materials, dem laut Google Scholar international wichtigsten Journal im Bereich Materialforschung.

    Manipulation der energetischen Materiallandschaft

    „Der grundlegende Ansatz unserer Forschung zum elektrostatischen Design von Materialien ist es, die elektronischen Eigenschaften insbesondere von halbleitenden Materialien so zu modifizieren, dass kontrolliert Energieniveaus verschoben werden können. Dabei wenden wir Effekte an, die sich aus der periodischen Anordnung von dipolaren Gruppen ergeben. Wir versuchen also nicht, Wege zu finden, diese gerade an Grenzflächen unvermeidlichen Effekte zu umgehen, sondern nutzen sie ganz gezielt für unsere Zwecke aus“, erklärt Egbert Zojer.

    Schon länger widmet sich eine Gruppe um Zojer diesem Forschungsgebiet. Der erste Schritt war das elektrostatische Design von molekularen Monolagen, etwa auf Goldelektroden. Experimente haben gezeigt, dass die vorhergesagten Energieverschiebungen innerhalb der Schichten tatsächlich auftreten und sich der Ladungstransport durch die Monolagen gezielt manipulieren lässt. Auch die elektronischen Eigenschaften zweidimensionaler Materialien, wie beispielsweise Graphen, lassen sich über kollektive elektrostatische Effekte kontrollieren. In der Publikation in Advanced Materials demonstrieren die Dissertantin Veronika Obersteiner, Egbert Zojer und weitere Kolleginnen und Kollegen aus der Arbeitsgruppe das volle Potential des Konzepts, indem sie es auf dreidimensionale Materialien erweitern.

    „Für das Beispiel dreidimensionaler kovalenter organischer Netzwerke zeigen wir, wie man mittels kollektiver elektrostatischer Effekte die energetische Landschaft innerhalb eines ausgedehnten Materials so manipuliert, dass räumlich begrenzte Pfade für Elektronen und Löcher entstehen. So kann man beispielsweise gezielt Ladungsträger trennen und die elektronischen Materialeigenschaft quasi nach Lust und Laune gestalten.“, so Zojer.

    Das vorliegende Konzept kann insbesondere für Solarzellen interessant sein. In klassischen organischen Solarzellen nutzt man chemisch unterschiedliche Elemente, so genannte Donatoren und Akzeptoren, zum Auftrennen der durch den Absorptionsprozess entstandenen Elektron-Loch Paare. Im hier vorgeschlagenen Zugang funktioniert die dazu nötige lokale Verschiebung der Energieniveaus aufgrund periodisch eingebauter polarer Gruppen. Die halbleitenden Bereiche, auf die die Elektronen bzw. die Löcher verschoben werden, sind dabei chemisch ident. „Wir können so die Energieniveaus durch Variation der Dipoldichte effizient und quasi kontinuierlich einstellen. Diese Arbeit ist der bisherige Höhepunkt unserer intensiven Forschung am elektrostatischen Materialdesign“, sagt Zojer.

    Mit elektrostatischem Design in 3D-Systemen können auch komplexe Quantenstrukturen realisiert werden, wie Quantenschachbretter oder Quantenkaskaden. „Nur die Phantasie der Materialdesigner setzt unserem neuen Konzept Grenzen“, betonen Zojer und Obersteiner unisono.

    Zur Originalpublikation:
    Electrostatic Design of 3D Covalent Organic Networks
    Advanced Materials | DOI: 10.1002/adma.201700888
    http://onlinelibrary.wiley.com/doi/10.1002/adma.201700888/full
    Weiteres Bildmaterial verfügbar unter http://bit.ly/2q5FyCh

    Dieses Forschungsprojekt ist im Field of Expertise „Advanced Materials Science“ verankert, einem von fünf strategischen Schwerpunktfeldern der TU Graz.

    Kontakt:
    Egbert ZOJER
    Ao.Univ.-Prof. Dipl.-Ing. Dr.techn.
    TU Graz | Institut für Festkörperphysik
    Tel.: +43 316 873 8475
    E-Mail: egbert.zojer@tugraz.at


    Bilder

    Egbert Zojer und Viktoria Obersteiner, die Hauptautoren des in Advanced Materials erschienenen paper.
    Egbert Zojer und Viktoria Obersteiner, die Hauptautoren des in Advanced Materials erschienenen paper ...
    © TU Graz
    None

    3D Absicht von manipulierter energetischer Landschaft innerhalb eines ausgedehnten Materials.
    3D Absicht von manipulierter energetischer Landschaft innerhalb eines ausgedehnten Materials.
    © TU Graz
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Energie, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Egbert Zojer und Viktoria Obersteiner, die Hauptautoren des in Advanced Materials erschienenen paper.


    Zum Download

    x

    3D Absicht von manipulierter energetischer Landschaft innerhalb eines ausgedehnten Materials.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).