idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
13.07.2017 16:33

The bubbling of order

Carolin Hoffrogge Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik und Selbstorganisation

    Molecular order promotes cavitation

    Cavitation describes the formation of small bubbles in liquids and their subsequent decay. The Dutch physicist Christiaan Huygens first discovered the phenomenon of cavitation in 1672, and researchers in hydrodynamics have been busy understanding this process ever since. Cavitation is the cause of very practical problems because when the bubbles collapse rapidly, they release enormous energies. For example, cavitation bubbles cause annual repair costs of millions of dollars to propellers spinning in sea water. The so-called cavitation fracture occurs because the surface is damaged by the high mechanical stresses. A research-team from the Max Planck Institute for Dynamics and Self-Organization (MPIDS) in Göttingen, the Technical University of Berlin (TU Berlin) and the Swiss Federal Institute of Technology Zurich (ETH Zurich) has now shown that cavitation can also occur at a very small scale in liquids with molecular order. Thus, liquid crystals can very easily cavitate when flowing through microfluidic channels. Based on their results, the researchers hope in the future to develop bubble formation in different fluids, as well as to better understand processes in the cell, since biological building blocks of the cell have similar properties as liquid crystals. These results are now published by Tillmann Stieger and collaborators in the journal Nature Communications.

    Order is the key

    If a liquid moves quickly with respect to a solid object, the pressure drops. If this pressure drop reaches the vapor pressure, cavitation occurs. The phenomenon is known as hydrodynamic cavitation. The team of researchers from Göttingen, Berlin and Zurich has now found that cavitation in liquid crystals occurs already under very mild conditions - in contrast to the hitherto known aggressive methods. Due to their material properties, the molecules of the liquid crystals arrange parallel to one another in the flow, so that the formation of bubbles is energetically favored.

    As in the big so in the small

    This work originates from investigations by Dr. Anupam Sengupta during his PhD work at the MPIDS, who is now working as Human Frontiers Cross-Disciplinary Fellow in Zurich. The researchers discovered that liquid crystals cavitate very easily when they flow in tiny channels. In their experiments, they flowed liquid crystals in tiny channels with a diameter of 100 micrometers (the width of a hair). Downstream of an obstruction in the channel a pressure drop forms, where the scientists observed cavitation. Dr. Sengupta teamed up with Dr. Marco G. Mazza, head of a research group in the Department of Complex Fluids at the MPIDS, to carry out molecular dynamics simulations and study the problem theoretically.

    The researchers observed that the more the molecules are aligned in the liquid crystals, the easier it is to cavitate. This means that the degree of order of the liquid crystals regulates the cavitation process. This discovery has implications for a serious limitation of microfluidics, namely the mixing of liquids in microfluidic devices. In the case of flows at the microscale, the mixing occurs mainly by molecular diffusion, a very slow process. The growth of cavitation bubbles and their breakdown can considerably accelerate the mixing process.

    "This is an exciting new development in the more-than-100 year old field of liquid crystal research", emphasizes Dr. Marco G. Mazza. “Our work opens new possibilities to manipulate hydrodynamic flow through the order and topology of liquid crystals. This will be a direction we will pursue in the future, says Mazza concluding.


    Weitere Informationen:

    http://www.ds.mpg.de/3118513/170703_PM_cavitation
    https://www.nature.com/articles/ncomms15550.pdf


    Bilder

    Disclination lines in the liquid crystal flowing around an obstacle in a microfluidic channel
    Disclination lines in the liquid crystal flowing around an obstacle in a microfluidic channel
    Quelle: (c) MPIDS

    Growth of a cavitation domain
    Growth of a cavitation domain
    Quelle: (c) MPIDS


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Disclination lines in the liquid crystal flowing around an obstacle in a microfluidic channel


    Zum Download

    x

    Growth of a cavitation domain


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).