idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
29.09.2017 11:00

Ein neuer Regelknopf zur Kontrolle und Erzeugung höherer Harmonischer in Festkörpern

Jenny Witt Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

    Wissenschaftler am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) und dem Center for Free-Electron Laser Science (CFEL) in Hamburg haben einen neuen Regelknopf nachgewiesen, der die Kontrolle und Optimierung der Erzeugung hoher Harmonischer in Volumenfestkörpern ermöglicht. Die Erzeugung hoher Harmonischer ist einer der wichtigsten physikalischen Prozesse zur Produktion hochenergetischer Photonen und zur ultraschnellen Informationsmanipulation.

    Die Erzeugung hoher Harmonischer in Gasen wird heutzutage routinemäßig in vielen verschiedenen Wissenschaftsdiziplinen verwendet, von der Physik über die Chemie bis zur Biologie. In diesem Starkfeldphänomen werden viele niederenergetische Photonen aus einem sehr intensiven Laserfeld in wenige Photonen höherer Energie konvertiert. Obwohl dieses Phänomen in Festkörpern zunehmend an Aufmerksamkeit gewinnt, wird der Mechanismus, der dieser Lichtkonversion in Kristallen zugrunde liegt, immer noch kontrovers diskutiert.

    Wissenschaftler vom MPSD (Max Planck Institute für Struktur und Dynamik der Materie) und CFEL* (Center for Free-Electron Laser Science) in Hamburg benutzten modernste theoretische Simulationsmethoden, um das grundlegende Verständnis dieses Phänomens in Festkörpern weiterzuentwickeln. Ihre Arbeit erscheint nun in Nature Communications.

    Wenn Atome und Moleküle mit intensiven Laserpulsen wechselwirken, emittieren sie hohe Harmonische des treibenden fundamentalen Laserfeldes. Die hohe Harmonische Erzeugung (HHG) in Gasen wird heutzutage routinemäßig zur Produktion isolierter Attosekundenpulse und von kohärenter Strahlung vom sichtbaren bis in den weichen Röntgen-Spektralbereich benutzt.

    Aufgrund der höheren Elektronendichte stellen Festkörper eine vielversprechende Forschungsrichtung zur Realisierung von kompakten, helleren HHG-Quellen dar. Der Fortschritt wird derzeit jedoch behindert durch das Fehlen eines genauen Verständnisses des mikroskopischen Mechanismus, der HHG in Festkörpern zugrunde liegt.

    Ein Forschungsteam vom MPSD und CFEL hat nun gezeigt, dass es mit elliptisch polarisierten Treiberfeldern möglich ist, das komplexe Wechselspiel zwischen den beiden mikroskopischen Mechanismen, die für die HHG in Festkörpern verantwortlich sind, zu enträtseln. Mithilfe von umfangreichen ab-initio Computersimulationen zeigt das Team, wie diese beiden Mechanismen stark und unterschiedlich von der Elliptizität des treibenden Laserfeldes beeinflusst werden.

    Das komplexe Wechselspiel zwischen diesen Effekten kann dazu genutzt werden, um die Emission höherer Harmonischer gezielt zu beeinflussen und sogar zu verbessern. Insbesondere konnten die Forscher nachweisen, dass die höchste erzeugte Photonenenergie um bis zu 30% erhöht werden kann, wenn Treiberfelder mit von Null verschiedener Elliptizität verwendet werden.

    Sie demonstrierten auch die Möglichkeit, zirkular polarisierte Harmonische mit alternierender Helizität durch einfarbige, zirkular polarisierte Treiberfelder zu erzeugen. Dadurch eröffnen sich neue Wege zu einem besseren Verständnis und zur Kontrolle der HHG in Festkörpern basierend auf Elliptizität, mit faszinierenden neuen Möglichkeiten im Bereich der Spektroskopie magnetischer Materialien. Ihre Arbeit zeigt somit, dass Elliptizität ein zusätzlicher Regelknopf ist, um experimentell die Erzeugung höherer Harmonischer in Festkörpern zu kontrollieren.

    *CFEL ist eine wissenschaftliche Kooperation von DESY, Max-Planck-Gesellschaft und Uni Hamburg

    Originalpublikation:
    Ellipticity dependence of high-harmonic generation in solids: unraveling the interplay between intraband and interband dynamics
    N. Tancogne-Dejean, O.D. Mücke, F.X. Kärtner, A. Rubio
    Nature Communications, s41467-017-00764-5 (2017)

    Weitere Informationen über Jenny Witt, Presse- und Öffentlichkeitsarbeit MPSD, +49 40 8998 6593 / jenny.witt@mpsd.mpg.de


    Weitere Informationen:

    http://dx.doi.org/10.1038/s41467-017-00764-5 Originalpublikation


    Bilder

    Regt man Kristalle wie Silizium durch einen intensiven elliptisch oder zirkular polarisierten Lichtpuls (rot) an, können zirkular polarisierte höhere Harmonische (grün & blau) erzeugt werden.
    Regt man Kristalle wie Silizium durch einen intensiven elliptisch oder zirkular polarisierten Lichtp ...
    Quelle: Nicolas Tancogne-Dejean + Joerg M. Harms, MPSD


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Regt man Kristalle wie Silizium durch einen intensiven elliptisch oder zirkular polarisierten Lichtpuls (rot) an, können zirkular polarisierte höhere Harmonische (grün & blau) erzeugt werden.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).