idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
26.06.2018 10:42

Asymmetric plasmonic antennas deliver femtosecond pulses for fast optoelectronics

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

    Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 terahertz. This range in between is referred to as the terahertz gap, since components for signal generation, conversion and detection have been extremely difficult to implement.

    The TUM physicists Alexander Holleitner and Reinhard Kienberger succeeded in generating electric pulses in the frequency range up to 10 terahertz using tiny, so-called plasmonic antennas and run them over a chip. Researchers call antennas plasmonic if, because of their shape, they amplify the light intensity at the metal surfaces.

    Asymmetric antennas

    The shape of the antennas is important. They are asymmetrical: One side of the nanometer-sized metal structures is more pointed than the other. When a lens-focused laser pulse excites the antennas, they emit more electrons on their pointed side than on the opposite flat ones. An electric current flows between the contacts – but only as long as the antennas are excited with the laser light.

    "In photoemission, the light pulse causes electrons to be emitted from the metal into the vacuum," explains Christoph Karnetzky, lead author of the Nature work. "All the lighting effects are stronger on the sharp side, including the photoemission that we use to generate a small amount of current."

    Ultrashort terahertz signals

    The light pulses lasted only a few femtoseconds. Correspondingly short were the electrical pulses in the antennas. Technically, the structure is particularly interesting because the nano-antennas can be integrated into terahertz circuits a mere several millimeters across.

    In this way, a femtosecond laser pulse with a frequency of 200 terahertz could generate an ultra-short terahertz signal with a frequency of up to 10 terahertz in the circuits on the chip, according to Karnetzky.

    The researchers used sapphire as the chip material because it cannot be stimulated optically and, thus, causes no interference. With an eye on future applications, they used 1.5-micron wavelength lasers deployed in traditional internet fiber-optic cables.

    An amazing discovery

    Holleitner and his colleagues made yet another amazing discovery: Both the electrical and the terahertz pulses were non-linearly dependent on the excitation power of the laser used. This indicates that the photoemission in the antennas is triggered by the absorption of multiple photons per light pulse.

    "Such fast, nonlinear on-chip pulses did not exist hitherto," says Alexander Holleitner. Utilizing this effect he hopes to discover even faster tunnel emission effects in the antennas and to use them for chip applications.

    Publication:

    Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters.
    C. Karnetzky, P. Zimmermann, C. Trummer, C. Duque-Sierra, M. Wörle, R. Kienberger, A. Holleitner; Nature Communications June 25, 2018 – DOI: 10.1038/s41467-018-04666-y
    https://www.nature.com/articles/s41467-018-04666-y

    More information:

    The experiments were funded by the European Research Council (ERC) as part of the "NanoREAL" project and the DFG Cluster of Excellence "Nanosystems Initiative Munich" (NIM).

    Contact:

    Prof. Dr. Alexander Holleitner
    Walter Schottky Institute / Department of Physics
    Center for Nanotechnology and Nanomaterials
    Technical University of Munich
    Am Coulombwall 4a, 85748 Garching, Germany
    Tel: +49 89 289 11575
    E-Mail: holleitner@wsi.tum.de
    Web: https://www.wsi.tum.de/groups.php?group=holleitner

    Prof. Dr. Reinhard Kienberger
    Physik-Department E11
    Technical University of Munich
    James-Franck-Str. 1, 85748 Garching, Germany
    Tel: +49 89 289 12840
    E-Mail: reinhard.kienberger@tum.de
    Web: http://www.groups.ph.tum.de/e11


    Weitere Informationen:

    https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34767/ Link to the press release


    Bilder

    Pulses of femtosecond length from the pump laser (left) generate on-chip electric pulses in the terahertz frequency range. With the right laser, the information is read out again.
    Pulses of femtosecond length from the pump laser (left) generate on-chip electric pulses in the tera ...
    Image: Christoph Hohmann / NIM, Alexander Holleitner / TUM
    None

    Electronmicroscopic image of the chip with asymmetric plasmonic antennas made from gold on sapphire.
    Electronmicroscopic image of the chip with asymmetric plasmonic antennas made from gold on sapphire.
    Image: Alexander Holleitner / TUM
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Elektrotechnik, Informationstechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Pulses of femtosecond length from the pump laser (left) generate on-chip electric pulses in the terahertz frequency range. With the right laser, the information is read out again.


    Zum Download

    x

    Electronmicroscopic image of the chip with asymmetric plasmonic antennas made from gold on sapphire.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).