idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
27.07.2018 12:20

ERC Starting Grant for Dan Alistarh

Dr. Elisabeth Guggenberger Communications and Events
Institute of Science and Technology Austria

    Project to make machine learning faster through distribution is supported by prestigious European Research Council funding award | Project leverages the robustness of machine learning algorithms to noise as a tool to distribute work efficiently

    In this round of awards, two Starting Grants of the European Research Council (ERC) go to professors at the Institute of Science and Technology Austria (IST Austria). One of the awardees is Dan Alistarh, a computer scientist who joined IST Austria in 2017. In his project, which the ERC will support with about 1.5 million Euro, he plans to use new approaches to dramatically decrease the time it takes to train large-scale machine learning models. Currently it can be hard to distribute machine learning computation efficiently among many computation nodes. This is what Dan Alistarh wants to change by leveraging the robustness of machine learning algorithms to noise in order to distribute efficiently.

    Machine learning and data science are areas that have made tremendous progress over the last decade. But training a machine state-of-the-art datasets can take significant time, which limits the number of ideas that researchers can test within reasonable turnaround time. In such a case, computer scientists would normally use distributed systems, meaning that they let several computers or processing units work together simultaneously to complete the computation faster. But standard distribution methods are not easily applicable to algorithms in machine learning.

    “What happens if you apply standard methods to machine learning is that it does not seem to work well. It may well happen that you cannot obtain highly accurate models, or that performance is significantly lower than expected,” explains Dan Alistarh.

    If a task is distributed to several computation nodes (either CPUs or GPUs, for instance), one would hope to cut down the training time proportionally with the number of CPUs. This is what computer scientists call scalability. But after a distributing among a small number of nodes many algorithms can stop scaling. The reason behind this is that the nodes have to pass on a lot of information, and as the number of nodes goes up the system is using more and more of its computational power for communication. “You end up with a system that spends more time on communicating than on the actual useful computation that it is supposed to do,” Alistarh adds.

    The solution might lie in the robustness of machine learning algorithms to noise: for example, an image recognition algorithm may be confronted with some mislabeled images, and the overall outcome will not be affected. Dan Alistarh will make use of similar notions of robustness to reduce the amount of communication and synchronization between nodes, an idea he calls “elastic coordination.”

    Normally, the nodes would transfer a complete and extensive amount of information like precise values of each parameter involved. But in machine learning this precision does not seem to be always necessary, which provides the potential to dramatically cut the costs of communication and synchronization. Dan Alistarh and his research group will pursue this approach to reduce training time for machine learning. At the same time he expects his work to examine fundamental questions about distributed computing.

    Dan Alistarh received his PhD from the École Polytechnique Fédérale de Lausanne (EPFL) and then took positions at MIT, Microsoft Research Cambridge, UK, and ETH Zurich. In 2017, he joined IST Austria where he leads a research group entitled “Distributed Algorithms and Systems”.

    About IST Austria

    The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas. www.ist.ac.at


    Wissenschaftliche Ansprechpartner:

    Dan Alistarh
    dan.alistarh@ist.ac.at


    Weitere Informationen:

    https://ist.ac.at/en/research/research-groups/alistarh-group/ Website of Dan Alistarh's research group


    Bilder

    Prof Dan Alistarh is awarded a Starting Grant of the European Research Council
    Prof Dan Alistarh is awarded a Starting Grant of the European Research Council
    IST Austria/Paul Pölleritzer
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Informationstechnik
    überregional
    Forschungsprojekte, Personalia
    Englisch


     

    Prof Dan Alistarh is awarded a Starting Grant of the European Research Council


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).