idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
23.10.2018 09:30

Edelmetallfreies Katalysatorsystem so aktiv wie Platin

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

    Als Katalysator für die Sauerstoffreduktion, die zum Beispiel in Brennstoffzellen oder Metall-Luft-Batterien ausschlaggebend ist, setzt die Industrie bisher Platinlegierungen ein. Das teure und seltene Metall setzt der Produktion enge Grenzen. Forscher der Ruhr-Universität Bochum (RUB) und des Max-Planck-Instituts für Eisenforschung haben jetzt eine aus fünf Elementen bestehende Legierung entdeckt, die edelmetallfrei und genauso aktiv ist wie Platin. Sie berichten im Journal Advanced Energy Materials vom 21. Oktober 2018.

    Neue Nachbarn bilden aktive Zentren

    Die katalytischen Eigenschaften von Nichtedelmetall-Elementen und deren Legierungen sind normalerweise schlecht. Zur Überraschung der Forscher zeigt aber eine Legierung aus fünf nahezu gleichmäßig vertretenen Komponenten deutlich verbesserte Eigenschaften. Grund dafür ist der sogenannte Hochentropieeffekt. Er führt dazu, dass mehrkomponentige Legierungen eine einfache Kristallstruktur behalten.

    „Durch das Zusammenwirken der verschiedenen benachbarten Elemente bilden sich neue aktive Zentren aus, die komplett neue Eigenschaften aufweisen und somit nicht mehr an die limitierenden Eigenschaften der einzelnen Elemente gebunden sind“, erklärt Tobias Löffler, Doktorand am RUB-Lehrstuhl für Analytische Chemie – Zentrum für Elektrochemie von Prof. Dr. Wolfgang Schuhmann. „Unsere Arbeit zeigt, dass diese Legierungen auch für die Katalyse hochinteressant sind.“

    Legierungs-Nanopartikelbibliotheken herstellen

    Auf der Suche nach einer Alternative zu Platin stellten die Forscher am Lehrstuhl für Werkstoffe der Mikrotechnik der RUB von Prof. Dr. Alfred Ludwig mittels einer speziellen Methode Legierungs-Nanopartikelbibliotheken aus fünf Ausgangselementen her. Deren Atome vermischen sich im Plasma und bilden in einem Substrat aus ionischer Flüssigkeit Nanopartikel. Die Flüssigkeit befindet sich in kleinen Vertiefungen auf einem Träger.
    Liegen die Nanopartikel in der Nähe der jeweiligen Atomquelle, ist der Anteil der Atome aus dieser Quelle im Partikel jeweils höher. In der Mitte des Trägers sind die Anteile aller fünf Elemente ungefähr gleich groß. „Dank dieses kombinatorischen Verfahrens haben wir präzise Kontrolle über die Zusammensetzung der Legierungsnanopartikel an jeder Stelle der Materialbibliothek“, so Alfred Ludwig.

    Zusammensetzung optimiert

    Die so entstandenen Nanopartikel untersuchte das Forscherteam des Max-Planck-Instituts für Eisenforschung um Prof. Dr. Christina Scheu mittels Transmissionselektronenmikroskopie. Die Chemiker der RUB ermittelten ihre katalytische Aktivität und verglichen sie mit der von Platinnanopartikeln.

    So fanden sie ein System aus fünf Elementen, bei dem der Hochentropieeffekt eine katalytische Aktivität für die Sauerstoffreduktion bewirkt, die vergleichbar mit der von Platin ist. Indem sie die Zusammensetzung optimierten, konnten sie die Aktivität sogar noch weiter steigern.

    Weitreichende Auswirkungen auf die Elektrokatalyse

    „Diese Erkenntnis hat möglicherweise weitreichende Auswirkungen auf die Elektrokatalyse generell“, schätzt Wolfgang Schuhmann. Die Forscher hoffen, dank der nahezu unerschöpflichen Kombinationsmöglichkeiten von Elementen und der Modifizierung ihrer Zusammensetzung, die Eigenschaften für gewünschte Reaktionen anpassen zu können. „Der Einsatz muss somit nicht auf die Sauerstoffreduktion beschränkt sein“, so Ludwig. Das Forscherteam hat bereits ein Patent angemeldet.
    Noch ist das komplexe Zusammenwirken der Elemente allerdings nicht komplett verstanden, sodass die Forscher noch keine Katalysatoren gezielt entwickeln können. „Diese Forschung legt den Grundstein für weitere Untersuchungen zum besseren Verständnis und stellt Hochentropielegierungen aus mehreren Elementen als neue Katalysatorklasse vor“, betonen die Forscher.

    Förderung

    Die Arbeiten wurden gefördert vom Bundesministerium für Bildung und Forschung im Rahmen der Projekte NEMEZU (FKZ 03SF0497B) und Mangan (FKZ 03EK3548) sowie von der Deutschen Forschungsgemeinschaft (LU1175/23-1, SCHE634/21-1, Exploring Multinary Nanoparticles by Combinatorial Sputtering into Ionic Liquids and Advanced Transmission Electron Microscopy) sowie im Rahmen des Transregio Sonderforschungsbereichs CRC247 und dem Cluster of Excellence Ruhr explores Solvation, kurz Resolv (EXC1069).

    Originalveröffentlichung

    Tobias Löffler, Hajo Meyer, Alan Savan, Patrick Wilde, Alba Garzón Manjón, Yen Ting Chen, Edgar Ventosa, Christina Scheu, Alfred Ludwig, Wolfgang Schuhmann: Discovery of a multinary noble metal free oxygen reduction catalyst, in: Advanced Energy Materials, 2018, DOI: 10.1002/aenm.201802269

    Pressekontakt

    Prof. Dr. Alfred. Ludwig
    Werkstoffe der Mikrotechnik
    Institut für Werkstoffe
    Fakultät für Maschinenbau
    Ruhr-Universität Bochum
    Tel.: 0234 32 27492
    E Mail: alfred.ludwig@rub.de
    Prof. Dr. Wolfgang Schuhmann
    Analytische Chemie – Zentrum für Elektrochemie
    Fakultät für Chemie und Biochemie
    Ruhr-Universität Bochum
    Tel.: 0234 32 26200
    E-Mail: wolfgang.schuhmann@rub.de


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Alfred. Ludwig
    Werkstoffe der Mikrotechnik
    Institut für Werkstoffe
    Fakultät für Maschinenbau
    Ruhr-Universität Bochum
    Tel.: 0234 32 27492
    E Mail: alfred.ludwig@rub.de

    Prof. Dr. Wolfgang Schuhmann
    Analytische Chemie – Zentrum für Elektrochemie
    Fakultät für Chemie und Biochemie
    Ruhr-Universität Bochum
    Tel.: 0234 32 26200
    E-Mail: wolfgang.schuhmann@rub.de


    Originalpublikation:

    Tobias Löffler, Hajo Meyer, Alan Savan, Patrick Wilde, Alba Garzón Manjón, Yen Ting Chen, Edgar Ventosa, Christina Scheu, Alfred Ludwig, Wolfgang Schuhmann: Discovery of a multinary noble metal free oxygen reduction catalyst, in: Advanced Energy Materials, 2018, DOI: 10.1002/aenm.201802269


    Weitere Informationen:

    https://onlinelibrary.wiley.com/doi/10.1002/aenm.201802269 - Link zum Paper


    Bilder

    Das Forscherteam Tobias Löffler, Alan Savan, Alfred Ludwig und Wolfgang Schuhmann (von links) vor der kombinatorischen Sputteranlage, in der die Nanopartikelbibliotheken hergestellt wurden
    Das Forscherteam Tobias Löffler, Alan Savan, Alfred Ludwig und Wolfgang Schuhmann (von links) vor d ...
    Quelle: RUB, Kramer


    Merkmale dieser Pressemitteilung:
    Journalisten
    Energie, Maschinenbau, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


     

    Das Forscherteam Tobias Löffler, Alan Savan, Alfred Ludwig und Wolfgang Schuhmann (von links) vor der kombinatorischen Sputteranlage, in der die Nanopartikelbibliotheken hergestellt wurden


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).