idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.10.2019 14:01

TU Braunschweig: Integrated time magnifier for the detection and measurement of very short signals

Ulrike Rolf Presse und Kommunikation
Technische Universität Braunschweig

    As a lens for images, a time-lens magnifies short events in the time domain, so that they can be measured by slow electronics, yet such a time magnifier is available as an integrated photonic device.

    The steadily increasing usage of streaming services, online games and social media results in ever-increasing data rates and thus ever shorter signals in the global communication networks. For very short signals, however, electronic systems are too slow to detect or measure them. To see extremely small objects, microscopes or lenses can be used to magnify the image of the object so that the naked eye is sufficient to recognize it. The same idea can also be used for extremely short signals; i.e. a time lens magnifies the signal in time so that it can be detected by slow electronics.

    Previously shown time lenses are based on the fact, that a very short signal consists of many individual frequencies. The shorter the signal, the more frequencies occur. In a so-called dispersive waveguide, e.g. an optical fiber, these signal frequencies propagate at different speeds. At the output of the fiber, first the high, then the middle and at last the low frequencies will occur. The input signal is thus stretched in time and can eventually be measured by slow electronics. For most applications of this technique, it would be very advantageous to have an integrated version of such time lenses on a chip. However, dispersive waveguides are usually relatively long, they are hard or even impossible to integrate and so-called higher-order dispersions lead to distortions of the signal.

    The THz-Photonics Group of TU Braunschweig, led by Thomas Schneider, together with Linjie Zhou from the state key laboratory of advanced optical communications systems and networks at the Shanghai Jiao Tong University has now developed a new method for the time magnification of optical or even electrical signals, which can be integrated on a single chip. For this purpose, the signal is first coupled into a ring resonator (simply a ring with coupling and decoupling). If the round-trip time in the ring is higher than the duration of the signal, just one single copy of the signal will be extracted from the ring at each round trip. The time between two copies of the signal corresponds to the round-trip time and the number of copies depends on the signal energy in the ring.

    In a second step, two coupled modulators are used to scan the individual copies. A very short pulse is multiplied with the copies of the signal. Thus, the amplitude value of the signal is measured exactly at the timely pulse position. If the repetition rate of the signal after the ring is slightly different from the repetition rate of the sampling pulses, each individual copy of the signal is measured at a different position. The envelope over the individual samples is the temporally magnified input signal, which can now be measured with slow electronics.

    The ring resonator was integrated on a silicon nitrite chip. The two coupled modulators used in the proof of concept setup are still standard Telekom devices. However, both modulators can be integrated with the ring resonator and additional electronics on a single complementary metal oxide semiconductor (CMOS) chip. The same technology as used in the production of computer chips.

    The method enables integrated, cost-effective analog to digital converters and measuring systems with extremely small dimensions for the characterization of single, irregular events with a fast change and very large bandwidths up to the THz range.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Thomas Schneider
    Technische Universität Braunschweig
    Institute of High Frequency Technology
    THz-Photonics group
    Schleinitzstraße 22
    38106 Braunschweig
    Tel.: +49 531 391-2003
    E-Mail: thomas.schneider@ihf.tu-bs.de
    www.tu-braunschweig.de/ihf


    Originalpublikation:

    A.Misra, S. Preussler, L. Zhou and T. Schneider “Nonlinearity- and dispersion- less integrated optical time magnifier based on a high-Q SiN microring resonator” Scient. Rep. 10.1038/s41598-019-50691-2 (SREP-19-24563-T). In Scientific Reports https://rdcu.be/bSSAG


    Bilder

    Electronic-optical silicon chip with coupling of optical (left) and high-frequency electrical signals (right) on a conventional electrical circuit board.
    Electronic-optical silicon chip with coupling of optical (left) and high-frequency electrical signal ...
    Quelle: Arijit Misra/TU Braunschweig, free for publication


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Elektrotechnik, Informationstechnik
    überregional
    Buntes aus der Wissenschaft, Forschungsergebnisse
    Englisch


     

    Electronic-optical silicon chip with coupling of optical (left) and high-frequency electrical signals (right) on a conventional electrical circuit board.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).