idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
13.02.2020 14:28

Essential for survival: Biologists from Bayreuth investigate the role of the largest of all animal brain cells

Christian Wißler Pressestelle
Universität Bayreuth

    The brains of most fish and amphibian species contain a pair of conspicuously large nerve cells. These are the largest cells found in any animal brain. They are called Mauthner cells and trigger lightning-fast escape responses when predators approach. Biologists at the University of Bayreuth have now shown that these cells have unique functions essential for survival, the loss of which cannot be compensated for by other nerve cells. In addition, they have discovered that Mauthner cells remain functional for a long time without their cell bodies (soma). The researchers have published their findings in the journal “PNAS”.

    The new findings contradict the widespread view that vital functions of nervous systems are not dependent on individual cells specifically equipped for the purpose. "For some years now, there has been a tendency in biology to assume that there are only weakly developed hierarchies in animal nervous systems. Therefore, one could basically assume that any vital functions are at least partially taken over by other areas of the nervous system in case of failure of the nerve cells that are primarily responsible for a given function. However, Mauthner cells in fish and amphibians are examples of a strong hierarchical dependence. In our experiments, we were able to show that a loss of these cells leads to a lifelong failure of the escape reflexes they control that can never be compensated for", explains the Bayreuth animal physiologist Prof. Dr. Stefan Schuster, who directed the investigations.

    This central function of Mauthner cells was long misunderstood. It was believed that a Mauthner cell was condemned to die without its cell body, the soma, and was therefore non-functional. This assumption led to incorrect interpretations of experiments in which the somata of the Mauthner cells had been removed. Here, rapid escapes were still present and these were erroneously explained by other nerve cells compensating for the supposed failure of the Mauthner cells. But in fact, as the Bayreuth researchers have now shown, Mauthner cells are extraordinarily tough. The structure that is crucial for the transmission of excitation in such a cell, the axon, is able to transmit signals to the nervous system and trigger reflex movements even after the cell body has been removed. Only when an important substructure of the axon - the Axon Initial Segment (AIS) - is missing, does a complete functional failure actually occur.

    "This observation is not really surprising, given the central importance of the Mauthner cells. It is precisely because of their unique function that evolution has ensured that they are able to fulfil important tasks even after relatively severe damage to the cell body," says Alexander Hecker M.Sc., the first author of the new study. With high-precision experiments on fish larvae, which did not result in them being killed, he was able to demonstrate the unusual toughness of these nerve cells.

    "Our results show that Mauthner cells deserve more attention in biomedicine. In particular, the structures and mechanisms that maintain important functions in these nerve cells even after serious damage to their cell body should be studied in as much detail as possible. This might provide a valuable starting point for investigations that focus on the maintenance and regeneration of damaged nerve cells," added Schuster.

    The research work was supported by the German Research Foundation (DFG) as part of a Reinhart Koselleck project.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Stefan Schuster
    Animal Physiology
    University of Bayreuth
    Phone: +49 (0)921 55-2470
    E-Mail: stefan.schuster@uni-bayreuth.de


    Originalpublikation:

    Alexander Hecker, Wolfram Schulze, Jakob Oster, David O. Richter, and Stefan Schuster: Removing a single neuron in a vertebrate brain forever abolishes an essential behavior. PNAS – Proceedings of the National Academy of Sciences of the United States of America (2020). DOI: https://doi.org/10.1073/pnas.1918578117


    Bilder

    Alexander Hecker M.Sc. and Prof. Dr. Stefan Schuster, Department of Animal Physiology at the University of Bayreuth.
    Alexander Hecker M.Sc. and Prof. Dr. Stefan Schuster, Department of Animal Physiology at the Univers ...
    Quelle: Photo: Christian Wißler.

    Zebrafish in an aquarium of the Department of Animal Physiology at the University of Bayreuth.
    Zebrafish in an aquarium of the Department of Animal Physiology at the University of Bayreuth.
    Quelle: Photo: Dr. Wolfram Schulze.


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
    Biologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Alexander Hecker M.Sc. and Prof. Dr. Stefan Schuster, Department of Animal Physiology at the University of Bayreuth.


    Zum Download

    x

    Zebrafish in an aquarium of the Department of Animal Physiology at the University of Bayreuth.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).