idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/02/2011 17:50

Neue hochauflösende Methoden in der Fluoreszenzmikroskopie

Marietta Fuhrmann-Koch Kommunikation und Marketing
Ruprecht-Karls-Universität Heidelberg

    Mit Hilfe chemischer Verfahren können physikalische Beschränkungen in der hochauflösenden Lichtmikroskopie umgangen werden. Forscher des Physikalisch-Chemischen Instituts und des Exzellenzclusters „CellNetworks“ der Universität Heidelberg haben eine neue Methode entwickelt, bei der anstelle von lichtabhängigen Prozessen chemische Reaktionen zum Einsatz kommen, um zelluläre Strukturen für hochauflösende lichtmikroskopische Untersuchungen zu markieren. Diese Methode ermöglicht neue Anwendungsgebiete für die Fluoreszenzmikroskopie.

    Pressemitteilung
    Heidelberg, 2. März 2011

    Neue hochauflösende Methoden in der Fluoreszenzmikroskopie
    Heidelberger Wissenschaftler nutzen lichtunabhängigen Prozess mit chemisch schaltbarer Sonde

    Mit Hilfe chemischer Verfahren können physikalische Beschränkungen in der hochauflösenden Lichtmikroskopie umgangen werden. Forscher des Physikalisch-Chemischen Instituts und des Exzellenzclusters „CellNetworks“ der Universität Heidelberg haben eine neue Methode entwickelt, bei der anstelle von lichtabhängigen Prozessen chemische Reaktionen zum Einsatz kommen, um zelluläre Strukturen für hochauflösende lichtmikroskopische Untersuchungen zu markieren. Diese Methode ermöglicht neue Anwendungsgebiete für die Fluoreszenzmikroskopie. Die Ergebnisse wurden online in der Zeitschrift „Angewandte Chemie International Edition“ veröffentlicht.

    Die Fluoreszenzmikroskopie ist eine weit verbreitete Methode, um Zellbestandteile zu untersuchen. Allerdings verhindert die sogenannte Beugungsgrenze detaillierte Einblicke in zelluläre Strukturen: Danach lassen sich Objekte, die weniger als 0,3 Mikrometer voneinander entfernt liegen, nicht mehr getrennt voneinander abbilden. Um diese Grenze zu umgehen, wurden neue Methoden entwickelt, zu denen beispielsweise die Stochastische Optische Rekonstruktionsmikroskopie (STORM) zählt. Dabei werden Zellstrukturen mit fluoreszierenden Farbstoffen markiert und durch Licht einer bestimmten Wellenlänge angeregt und sichtbar gemacht. Eine hohe Auflösung von ungefähr 0,02 Mikrometer wird erreicht, indem die Mehrzahl der Farbstoffe ausgeschaltet und nur eine geringe Anzahl angelassen wird, so dass das ausgesandte Licht benachbarter Farbstoffe nicht mehr überlagert abgebildet wird. Dieses Schalten der Farbstoffe wird ebenfalls durch Licht gesteuert. Die Position der angeschalteten Farbstoffe lässt sich über eine mathematische Analyse mit sehr hoher Präzision von ungefähr 0,003 Mikrometer bestimmen. Die mehrfache Wiederholung dieser Prozedur liefert exakte Informationen über den Aufenthaltsort aller Farbstoffe und lässt damit eine hochauflösende Rekonstruktion der untersuchten Zellstrukturen zu.

    Diese Untersuchungsmethode stellt allerdings besondere Anforderungen an das Mikroskop und die eingesetzten Lichtquellen: Um die jeweiligen Farbstoffe zu schalten, werden entweder unterschiedliche Laserlinien oder hohe Lichtintensitäten oder auch beides zugleich benötigt, was bei der Untersuchung lebender Zellen problematisch werden kann. Das Team um den Heidelberger Chemiker Dr. Dirk-Peter Herten hat das Schalten von Farbstoffen mit Hilfe von Laserlicht durch einen lichtunabhängigen Prozess ersetzt. Dabei passten die Wissenschaftler eine chemische Sonde zum Nachweis von Kupferionen so an, dass diese Sonde mit ihren fluoreszierenden Eigenschaften zur Markierung von zellulären Strukturen genutzt werden kann. Bindet Kupfer(II) an diese Sonde, wird deren Fluoreszenz gelöscht. Diese Bindung des Kupfer(II)-Ions ist umkehrbar, wobei auch die Fluoreszenz der Sonde wiederhergestellt wird. Somit wird die mikroskopische Untersuchung der Zellstrukturen mit Hilfe einer umkehrbaren, das heißt reversiblen, chemischen Reaktion gesteuert.

    Die Wissenschaftler haben die Methode CHIRON – chemically improved resolution for optical nanoscopy – genannt. Damit lassen sich laut Dr. Herten Mikroskopieverfahren wie STORM soweit vereinfachen, dass auf den Einsatz zusätzlicher Laserlinien und auf hohe Lichtintensitäten verzichtet werden kann. Stattdessen muss lediglich die Sonde in einer zellulären Umgebung vorliegen, der kleinste Mengen von Kupfersulfat zugegeben werden können, zum Beispiel fixierte Zellen. „Damit ergeben sich neue Anwendungsgebiete für die hochauflösende Mikroskopie, die vorher wegen technischer Beschränkungen unzugänglich waren, denn unsere Sonden lassen sich auf vielen Mikroskopen einsetzen“, erläutert Dr. Herten.

    Informationen im Internet können unter der Adresse http://www.bioquant.uni-heidelberg.de/research/groups/single_molecule_spectroscopy.html abgerufen werden.

    Hinweis an die Redaktionen:
    Digitales Bildmaterial ist in der Pressestelle erhältlich.

    Originalveröffentlichung:
    M. Schwering, A. Kiel, A. Kurz, K. Lymperopoulos, A. Sprödefeld, R. Krämer, D.-P. Herten: Far-Field Nanoscopy with Reversible Chemical Reactions / Hochauflösende Mikroskopie mit reversiblen chemischen Reaktionen. Angewandte Chemie International Edition, 15. Februar 2011, doi: 10.1002/anie.201006013

    Kontakt:
    Dr. Dirk-Peter Herten
    Exzellenzcluster CellNetworks
    Physikalisch-Chemisches Institut
    Telefon (06221) 54-51220
    dirk-peter.herten@urz.uni-hd.de

    Kommunikation und Marketing
    Pressestelle, Telefon (06221) 54-2311
    presse@rektorat.uni-heidelberg.de


    Images

    Das Fluoreszenzsignal von zwei Proben kann sich überlagern und unter die Beugungsgrenze fallen. Durch die Möglichkeit, einzelne Sonden abzubilden, kann man die Position sehr viel genauer rekonstruieren.
    Das Fluoreszenzsignal von zwei Proben kann sich überlagern und unter die Beugungsgrenze fallen. Durc ...

    None


    Criteria of this press release:
    Journalists
    Chemistry, Physics / astronomy
    transregional, national
    Research results
    German


     

    Das Fluoreszenzsignal von zwei Proben kann sich überlagern und unter die Beugungsgrenze fallen. Durch die Möglichkeit, einzelne Sonden abzubilden, kann man die Position sehr viel genauer rekonstruieren.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).