idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
07/06/2012 09:27

Gelöstes Eisen – mit vergleichbaren Eigenschaften wie ein Festkörper

Dr. Ina Helms Lise-Meitner-Campus Wannsee
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

    HZB-Wissenschaftler haben eine neue Methode entwickelt, um in Flüssigkeit gelöste Metall-Ionen besser untersuchen zu können – Fortschritt für die Katalysatorforschung

    Wissenschaftler am HZB haben die neue Methode – die „Inverse Partial Fluorescence Yield“ (iPFY) – entwickelt, mit der sie die Absorption von Röntgenstrahlung in einem Flüssigkeitsstrahl messen können, der sich frei durch ein Vakuum bewegt. Solche Untersuchungen sind für die Strukturanalyse von Substanzen erforderlich, die in der Flüssigkeit gelöst sind. Dabei kann es sich beispielsweise um Metall-Ionen handeln, die als Bestandteil von Proteinen Katalysatoren biochemischer Reaktionen in Zellen sind.

    Bisher konnten die Analysen nur erfolgen, wenn sich die Flüssigkeit zwischen zwei Membranen befand. Die dabei auftretenden, störenden Wechselwirkungen sind beim freien Flüssigkeitsstrahl im Vakuum ausgeschlossen.

    Ihre neue Methode haben die Forscher um Prof. Dr. Emad Aziz, Gruppenleiter der Nachwuchsgruppe Struktur und Dynamik funktionaler Materialien am HZB, bereits erfolgreich zur Strukturmessung von Eisen-Ionen eingesetzt. Die Ergebnisse sind jetzt im Journal of Physical Chemistry Letters veröffentlicht worden (DOI: 10.1021/jz300403n).

    In ihrer Studie haben die HZB-Forscher in Wasser gelöste Eisen-Ionen mit Hilfe der vom Elektronenspeicherring BESSY II bereitgestellten weichen Röntgenstrahlung untersucht. Dazu bestrahlten sie einen Flüssigkeitsstrahl des Wassers im Vakuum. Die Untersuchungen hat Malte Gotz durchgeführt, der im Rahmen des Projekts seine Masterarbeit angefertigt hat: „Wir haben die Stärke der Absorption und der Energie dieser Röntgenstrahlung gemessen“, sagt er: „Daraus konnten wir konkrete Rückschlüsse auf die elektronische Struktur des untersuchten Materials im Wasser, der Eisen-Ionen ziehen.“ Die HZB-Forscher nutzten für die Messungen eine neue Herangehensweise, um die Absorption zu bestimmen, erklärt Gotz: „Wichtig ist ein weiteres chemisches Element, nämlich Sauerstoff, der sich zusätzlich zu den Eisen-Ionen im Flüssigkeitsstrahl befindet. Wird der Sauerstoff im Wasser mit Röntgenlicht bestrahlt und dadurch verändert, so sendet er für einen kurzen Zeitraum nach der Bestrahlung selbst Licht aus. Das kann man mit einem im Dunkeln leuchtenden Uhrzeiger vergleichen.“ Die ausgesendete Strahlung ist umso stärker, je stärker die einfallende Strahlung ist. Wird diese nun durch die Absorption eines anderen Materials – in diesem Fall Eisen-Ionen – reduziert, so drückt sich das direkt in der Reduktion der vom Sauerstoff ausgesandten Strahlung aus. „So können wir die Absorptionsstärke der Eisen-Ionen messen“, sagt Gotz.

    Die Messungen sind am freien Flüssigkeitsstrahl besonders exakt, wie Arbeitsgruppenleiter Emad Aziz betont: „Der Vorteil unseres Verfahrens ist, dass wir im freien Flüssigkeitsstrahl nur die Flüssigkeit selbst – ohne Wechselwirkung mit einem Behälter – und eine ständig frische Probe messen.“ Dabei stellten die Wissenschaftler so etwas wie ein Leuchten der Probe mit einer unerwarteten Farbe fest. Sie fanden heraus, dass bei den Eisen-Ionen, die in der Flüssigkeit einzeln vorliegen, aufgrund der Wechselwirkung mit der Lösung sogenannte Coster-Kroenig-Zerfallsketten möglich sind, die sonst aus Eisen in fester Form bekannt sind. Aziz: „Daraus konnten wir schlussfolgern, dass die Ionen stärker mit Wasser interagieren als bisher gedacht.“

    Eine wichtige Erkenntnis, die neue Rückschlüsse auf die Struktur und Funktion von Eisen und anderen Übergangsmetallen wie Kobalt, Mangan oder Kupfer ermöglicht: Die Metalle dienen in Ionenform an den verschiedensten Orten als Katalysatoren chemischer Reaktionen und erfüllen biologische Schlüsselfunktionen – beispielsweise Eisen beim Sauerstofftransport in Blut. Neue, detaillierte Erkenntnisse über Struktur und Funktion dieser Katalysatoren sind in der Wissenschaft deshalb hochwillkommen.

    Weitere Informationen:
    Prof. Dr. Emad F. Aziz
    Gruppenleiter der Nachwuchsgruppe Struktur und Dynamik funktionaler Materialien
    Tel.: +49 (0)30‐8062‐15003
    emad.aziz@helmholtzberlin.de

    Malte Gotz
    Nachwuchsgruppe Funktionale Materialien in Flüssigkeiten
    malte.gotz@helmholtzberlin.de

    Pressestelle
    Dr. Ina Helms
    Tel.: +49 (0)30‐8062‐42034
    Fax: +49 (0)30‐8062‐42998
    ina.helms@helmholtzberlin.de


    More information:

    http://www.helmholtz-berlin.de/pubbin/news_seite?nid=13536&sprache=de&ty...=
    http://pubs.acs.org/doi/abs/10.1021%2Fjz300403n


    Images

    Gelöste Metall-Ionen lassen sich mithilfe der weichen Röntgenstrahlung untersuchen. In dem freien Flüssigkeitsstrahl im Vakuum befindet sich zusätzlich zu den Metall- Ionen Sauerstoff, der durch die Bestrahlung mit Röntgenlicht leuchtet und die Absorption der Metall-Ionen beeinflusst. Daraus können Forscher die Absorptionsstärke der Metall- Ionen berechnen und Rückschlüsse auf ihre elektronische Struktur ziehen.
    Gelöste Metall-Ionen lassen sich mithilfe der weichen Röntgenstrahlung untersuchen. In dem freien Fl ...
    Abb.: HZB
    None


    Attachment
    attachment icon Pressemitteilung als PDF

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Gelöste Metall-Ionen lassen sich mithilfe der weichen Röntgenstrahlung untersuchen. In dem freien Flüssigkeitsstrahl im Vakuum befindet sich zusätzlich zu den Metall- Ionen Sauerstoff, der durch die Bestrahlung mit Röntgenlicht leuchtet und die Absorption der Metall-Ionen beeinflusst. Daraus können Forscher die Absorptionsstärke der Metall- Ionen berechnen und Rückschlüsse auf ihre elektronische Struktur ziehen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).