idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/05/2013 09:27

Lasertechnik ermöglicht 3D-Zellforschung

Dr. Florian Aigner Büro für Öffentlichkeitsarbeit
Technische Universität Wien

    Mit Lasertechnologie will Aleksandr Ovsianikov an der TU Wien Mikrostrukturen mit eingebetteten lebenden Zellen bauen. Er erhält dafür einen der begehrtesten Europäischen Forschungspreise: Den ERC Starting Grant.

    Das Verhalten von Zellen hängt stark von der Umgebung ab, in der sie sich befinden. Um Zellen zu untersuchen und zu beeinflussen ist es daher höchst wertvoll, sie in eine maßgeschneiderte Umgebung einbauen zu können. Aleksandr Ovsianikov entwickelt ein Laser-gesteuertes Verfahren, mit dem man Zellen gezielt in feine Strukturen einweben kann – ähnlich wie in natürlichem biologischen Gewebe, wo sie von der sogenannten „extrazellulären Matrix“ umgeben sind. Wichtig ist das für die Züchtung von neuem Gewebe, für die Suche nach neuen Medikamenten oder für die Stammzellenforschung. Für dieses Projekt erhielt Ovsianikov nun einen ERC-Grant des European Research Council (ERC), der mit knapp 1,5 Millionen Euro dotiert ist.

    High-Tech-Strukturen für die biomedizinische Forschung

    „Zellen auf einer ebenen Fläche anzusiedeln, ist nicht schwer. Doch solche Zellkulturen benehmen sich anders als Zellen in einer dreidimensionalen Struktur“, erklärt Alexandr Ovsianikov. Im Gegensatz zur klassischen 2D Zell-Kultur in der Petrischale gibt es zur Zeit keine Standards für 3D-Systeme. Eine solche 3D-Struktur muss durchlässig sein, damit die Zellen mit allen notwendigen Stoffen versorgt werden können. Die Geometrie und die chemischen oder mechanischen Eigenschaften der Struktur sollen präzise angepasst werden können, um die Reaktion der Zellen auf die äußeren Bedingungen studieren zu können. Außerdem soll die 3D-Struktur rasch in großer Anzahl herstellbar sein, denn um verlässliche Ergebnisse zu erzielen muss man Experimente an Zellen oft an vielen Zellkulturen gleichzeitig durchführen.

    Genau diese Anforderungen kann die Forschungsgruppe „Additive Manufacturing Technologies“ der TU Wien bestens erfüllen: Das interdisziplinäre Team entwickelt seit Jahren spezielle Fertigungstechniken, mit denen sich dreidimensionale Strukturen mit einer Präzision im Mikrometer-Bereich herstellen lassen.

    Laser verhärtet Flüssigkeit

    Zu Beginn schwimmen die Zellen in einer Flüssigkeit, die hauptsächlich aus Wasser besteht. Beigemischt sind zellverträgliche Moleküle, die auf eine ganz bestimmte Weise mit Licht reagieren: Ein fokussierter Laserstrahl lässt genau an den gewünschten Stellen chemische Doppelbindungen brechen. Eine chemische Kettenreaktion führt dann dazu, dass sich die Moleküle zu einem Polymer verbinden.
    Um diese Reaktion auszulösen, müssen zwei Photonen des Laserlichts gleichzeitig absorbiert werden. Nur dort, wo das Laserlicht fokussiert ist, gibt es ausreichend viele Photonen für diesen Prozess. Material außerhalb dieses Bereichs wird dadurch nicht beeinflusst. „Dadurch können wir mit extrem hoher Präzision bestimmen, an welchen Stellen sich die Moleküle verkleben sollen und ein festes Netzwerk bilden“, erklärt Ovsianikov.

    Indem man den Fokus des Laserstrahls gezielt durch die Flüssigkeit lenkt, entsteht eine feste Struktur, in der die lebenden Zellen von Anfang an eingebaut sind. Die übrigen Moleküle, die nicht zu Polymeren verklebt wurden, können danach einfach weggewaschen werden. So kann man eine Struktur aus Hydrogelen bauen, ähnlich der extrazellulären Matrix, die unsere eigenen Zellen im lebenden Gewebe umgibt. Ideen aus der Natur werden im Labor imitiert und technologisch nutzbar gemacht: Diese Taktik – die Biomimetik - ist gerade in der Materialwissenschaft heute sehr gefragt. „Diese Technologie könnte in bestimmten Fällen auch Tierversuche unnötig machen, und dabei viel schnellere und aussagekräftigere Ergebnisse liefern“, hofft Ovsianikov.

    Hoffnungsgebiet Stammzellenforschung

    Ein besonders spannendes Anwendungsgebiet ist die Stammzellenforschung: „Wir wissen heute, dass sich Stammzellen je nach Umgebung zu unterschiedlichen Gewebetypen weiterentwickeln können“, sagt Aleksandr Ovsianikov. „So entwickeln sie sich etwa auf festerem Untergrund zu Knochenzellen, auf weicherem Untergrund zu Nervenzellen.“ In der Laser-generierten 3D-Struktur kann man die Steifigkeit des Untergrundes von Anfang an genau bestimmen und so möglicherweise ganz gezielt unterschiedliche Gewebetypen hervorbringen.

    Litauen, Deutschland, Österreich

    Entscheidend ist bei diesem Forschungsprojekt die Interdisziplinarität des Teams, zwischen Maschinenbau, Materialforschung, Biologie und Chemie. Die Möglichkeit, mit Expertenteams aus so unterschiedlichen Forschungsrichtungen unter einem Dach arbeiten zu können, war für Aleksandr Ovsianikov auch ein wichtiger Grund, nach Wien zu kommen. Seit zwei Jahren forscht der gebürtige Litauer nun an der TU Wien, vorher war er an der Universität Hannover beschäftigt, wo er auch seine Dissertation verfasste.

    Hochdotierte Auszeichnung des Europäischen Forschungsrates

    Das Forschungsprojekt von Alsksandr Ovsianikov wurde vom Europäischen Forschungsrat (European Research Council, ERC) nun mit einem „ERC Starting Grant“ ausgezeichnet. Dieser hochdotierte Förderpreis wird an aufstrebende junge Forscherinnen und Forscher vergeben, die damit auf ihrem Weg zu akademischen Führungspositionen unterstützt werden sollen. Durch den ERC-Grant soll Ovsianikov nun in den nächsten fünf Jahren die Möglichkeit bekommen, rund um sich ein Forschungsteam aufzubauen und auf eine wissenschaftliche Abenteuerreise zwischen Materialwissenschaft und Zellbiologie zu gehen.

    Rückfragehinweise:
    Dr. Aleksandr Ovsianikov
    Institut für Werkstoffwissenschaft und Werkstofftechnologie
    Technische Universität Wien
    Favoritenstr. 9-11, 1040 Wien
    T: +43-1-58801-30830
    aleksandr.ovsianikov@tuwien.ac.at


    More information:

    http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/ercovsianikov/ weitere Bilder
    http://www.expert-reviews.com/doi/abs/10.1586/erd.12.48 Review-Artikel über die Forschungsvorhaben von Aleksandr Ovsianikov auf "Expert Reviews"


    Images

    Ein dreidimensionales Netz kann hergestellt werden, das die Zellen festhält.
    Ein dreidimensionales Netz kann hergestellt werden, das die Zellen festhält.

    None


    Criteria of this press release:
    Journalists
    Chemistry, Materials sciences, Mechanical engineering, Medicine, Physics / astronomy
    transregional, national
    Research projects, Research results
    German


     

    Ein dreidimensionales Netz kann hergestellt werden, das die Zellen festhält.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).