idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/21/2013 11:01

Wie im Hirn, so in der Pflanze? Neuartiger Signalmechanismus in Pflanzenzellen entdeckt

Dr. Josef König Pressestelle
Ruhr-Universität Bochum

    Pflanzen besitzen Rezeptoren, die den Glutamatrezeptoren im Gehirn von Menschen und Tieren ähneln. Dass diese Rezeptoren jedoch nicht die Aminosäure Glutamat erkennen, sondern viele verschiedene andere Aminosäuren fanden Biochemiker der Ruhr-Universität Bochum mit Kollegen der Universität Würzburg und der Landwirtschaftlichen Universität Chinas in Peking heraus. Das Team berichtet in der Zeitschrift „Science Signaling“.

    Wie im Hirn, so in der Pflanze?
    Forscherteam entdeckt neuartigen Signalmechanismus in Pflanzenzellen
    Glutamatähnlicher Rezeptor der Ackerschmalwand erkennt kein Glutamat

    Pflanzen besitzen Rezeptoren, die den Glutamatrezeptoren im Gehirn von Menschen und Tieren ähneln. Dass diese Rezeptoren jedoch nicht die Aminosäure Glutamat erkennen, sondern viele verschiedene andere Aminosäuren fanden Biochemiker der Ruhr-Universität Bochum mit Kollegen der Universität Würzburg und der Landwirtschaftlichen Universität Chinas in Peking heraus. Das Team berichtet in der Zeitschrift „Science Signaling“.

    Glutamatähnlicher Rezeptor der Ackerschmalwand erkennt viele Aminosäuren

    Um Informationen auszutauschen, senden Zellen Botenstoffe aus, die von Rezeptoren anderer Zellen erkannt werden. Vor 15 Jahren entdeckten Forscher in einer Pflanze die glutamatähnlichen Rezeptoren, kurz GLRs genannt. Für einen der insgesamt 20 GLRs aus der Ackerschmalwand (Arabidopsis thaliana) hat ein Team um die RUB-Biochemiker Prof. Dr. Michael Hollmann und Dr. Daniel Tapken nun die zugehörigen Botenstoffe identifiziert. „Erstaunlicherweise reagiert der Rezeptor nicht nur auf eine Aminosäure, sondern auf viele verschiedene – aber gerade nicht auf Glutamat“, sagt Hollmann. Am wirksamsten ist Methionin, eine Aminosäure, die Menschen mit der Nahrung aufnehmen müssen, Pflanzen jedoch selbst herstellen können. Mutierte das Forscherteam die Pflanze so, dass sie den Rezeptor AtGLR1.4 nicht mehr enthielt, reagierte sie kaum noch auf Methionin.

    Pflanzenrezeptor ist ein Kanal

    In mancher Hinsicht verhielt sich der Rezeptor AtGLR1.4 ähnlich wie die Glutamatrezeptoren im Gehirn. Er ist ein Kanal, öffnet also – aktiviert durch einen Botenstoff – eine Pore und lässt verschiedene positiv geladene Teilchen in die Zelle strömen; so löst er ein elektrisches Signal aus. „Eine Besonderheit an diesem Rezeptor ist, dass nicht alle Aminosäuren, die an ihn binden, ein elektrisches Signal auslösen. Im Gegenteil! Manche unterdrücken das Signal, indem sie Methionin vom Rezeptor verdrängen“, erklärt Daniel Tapken.

    Funktion von Methionin-Rezeptoren in Pflanze unklar

    „Warum die Pflanze überhaupt Methionin und ähnliche Aminosäuren erkennt, ist noch völlig unklar“, so der Bochumer Biochemiker weiter. „Es könnte sein, dass sie auf diese Weise auf Nährstoffquellen in der Umgebung reagiert, die Aminosäuren enthalten. Es ist aber auch möglich, dass die Pflanze selbst gezielt Aminosäuren als Botenstoffe herstellt, um Signale zu übertragen – ähnlich wie es im menschlichen Gehirn geschieht.“

    Rezeptoren für Analyse in Frosch-Eizellen eingebaut

    Für die Analysen isolierte das RUB-Team den glutamatähnlichen Rezeptor aus Pflanzenzellen und baute ihn in eine Zelle ein, die keine ähnlichen Rezeptoren besitzt – eine unbefruchtete Frosch-Eizelle. „Den Rezeptor direkt in der Pflanze zu untersuchen ist kaum möglich“, weiß Hollmann. „Dort laufen so viele Prozesse gleichzeitig ab, dass man die entscheidenden Signale schwer herausfiltern kann.“

    Titelaufnahme

    D. Tapken, U. Anschütz, L.-H. Liu, T. Huelsken, G. Seebohm, D. Becker, M. Hollmann (2013): A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids, Science Signaling, DOI: 10.1126/scisignal.2003762

    Weitere Informationen

    Dr. Daniel Tapken, Lehrstuhl für Biochemie I – Rezeptorbiochemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24233, E-Mail: daniel.tapken@rub.de

    Prof. Dr. Michael Hollmann, Lehrstuhl für Biochemie I – Rezeptorbiochemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24225, E-Mail: michael.hollmann@rub.de

    Redaktion: Dr. Julia Weiler


    Images

    Baut man den hier grün markierten glutamatähnlichen Rezeptor AtGLR1.4 aus Arabidopsis in eine unbefruchtete Frosch-Eizelle, eine Oozyte, ein, findet man ihn dort an der Zelloberfläche. Gibt man verschiedene Aminosäuren zu (Met, Trp, Phe, Leu, Tyr, Thr), löst er in der Oozyte ein elektrisches Signal aus. Die wirksamste Aminosäure ist Methionin (Met). In Pflanzenzellen – hier einer Blattzelle aus Arabidopsis – findet man AtGLR1.4 ebenfalls an der Zelloberfläche. Gibt man Methionin zu, beobachtet man auch in der Pflanze ein elektrisches Signal. Mutiert man die Pflanze so, dass AtGLR1.4 ausgeschaltet ist, verschwindet dieses Signal fast vollständig.
    Baut man den hier grün markierten glutamatähnlichen Rezeptor AtGLR1.4 aus Arabidopsis in eine unbefr ...
    Bild: Daniel Tapken, Lehrstuhl für Biochemie I – Rezeptorbiochemie
    None


    Criteria of this press release:
    Journalists
    Biology, Chemistry
    transregional, national
    Research results, Scientific Publications
    German


     

    Baut man den hier grün markierten glutamatähnlichen Rezeptor AtGLR1.4 aus Arabidopsis in eine unbefruchtete Frosch-Eizelle, eine Oozyte, ein, findet man ihn dort an der Zelloberfläche. Gibt man verschiedene Aminosäuren zu (Met, Trp, Phe, Leu, Tyr, Thr), löst er in der Oozyte ein elektrisches Signal aus. Die wirksamste Aminosäure ist Methionin (Met). In Pflanzenzellen – hier einer Blattzelle aus Arabidopsis – findet man AtGLR1.4 ebenfalls an der Zelloberfläche. Gibt man Methionin zu, beobachtet man auch in der Pflanze ein elektrisches Signal. Mutiert man die Pflanze so, dass AtGLR1.4 ausgeschaltet ist, verschwindet dieses Signal fast vollständig.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).