idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/28/2014 09:56

Photonendoppelgänger in Diamant hergestellt: Identische Lichtteilchen hilfreich für Quantencomputer

Annika Bingmann Pressestelle
Universität Ulm

    Ulmer Forscher um Professor Fedor Jelezko haben erstmals Silizium-Fehlstellenzentren in künstlich hergestellten Diamanten für die Produktion identischer Photonen genutzt. Diese besonderen Diamanten sind das Resultat eines Unfalls beim Kristallzüchter der Physiker. Lichtteilchen, die sich nicht unterscheiden lassen, könnten den Weg zum leistungsfähigen Quantencomputer und zu einer sicheren Informationsübertragung ("Quantenkryptographie") ebnen.

    Identische Lichtteilchen („Photonen“) könnten den Weg zum leistungsfähigen Quantencomputer und zu einer sicheren Informationsübertragung ebnen. Bisher war die Herstellung von Photonen, die sich nicht unterscheiden, jedoch nur unter schwierigsten Bedingungen möglich. Jetzt haben Ulmer Wissenschaftler um Professor Fedor Jelezko und Dr. Lachlan Rogers Silizium-Fehlstellenzentren in künstlich hergestellten Diamanten für die Produktion identischer Photonen genutzt. Diese besonderen Diamanten waren Ergebnis eines „Unfalls“ bei dem Kristallzüchter der Forscher. Der entsprechende Fachbeitrag ist in „Nature Communications“ erschienen.

    Professor Fedor Jelezko, Leiter des Ulmer Instituts für Quantenoptik, gilt als ausgewiesener Experte für die Manipulation kleinster Teilchen in Festkörpern. Dabei liegt sein Schwerpunkt auf extrem reinen, künstlich hergestellten Diamanten. In ihren Kristallgittern, insbesondere mit dem Stickstoff-Fehlstellen-Zentrum, lassen sich Fremdatome kontrollieren und quantenmechanische Informationen über sie speichern. Diese Fehlstellen senden wiederum Lichtteilchen mit charakteristischen Eigenschaften aus.
    Für die aktuelle Publikation haben Forscher testweise Kristalle mit Silizium-Fehlstellenzentren benutzt, die als Mängelexemplare galten: Das Plasma, aus dem die künstlichen Diamanten gezüchtet werden, war kurzzeitig zu groß geworden und hat das Glasfenster aus Siliziumoxid angelöst. So sind Silizium-Atome in das Plasma gelangt und wurden im Laufe des Diamantenwachstums als Silizium-Fehlstellen „eingebaut“. „Tatsächlich erwiesen sich Silizium-Fehlstellenzentren als zuverlässige Emitter von einzelnen Photonen, die nicht unterscheidbar sind“, erklärt Lachlan Rogers, Wissenschaftler am Institut für Quantenoptik der Universität Ulm. Bisher habe man solche identischen Lichtteilchen in Gasen hergestellt, wobei frei bewegliche Atome kaum kontrolliert werden könnten. Lösung dieses Problems sei ihre Speicherung in Kristallgittern der Diamanten.

    Lichtteilchen, die sich in Farbe und Form entsprechen, sind für mehrere „Zukunftstechnologien“ hilfreich. Die Leistungsfähigkeit des Quantencomputers, der zahlreiche Berechnungen gleichzeitig durchführen kann, beruht auf der quantenmechanischen Verschaltung so genannter Qubits. Dazu wird das Phänomen „Verschränkung“ genutzt. Solche hochempfindlichen Verschränkungen können mithilfe von „Photonendoppelgängern“ wesentlich einfacher hergestellt werden. Verschränkungen sind zudem eine wichtige Grundlage für die sichere Informationsübertragung („Quantenkryptographie“).
    Weiterhin könnten Lichtteilchen, die sich zuverlässig entsprechen, bildgebende Verfahren verbessern.
    „Die größte Herausforderung ist jedoch die Kühlung der Diamanten auf bis zu -270 Grad Celsius“, sagt der Mitautor Kay Daniel Jahnke. In einem nächsten Schritt gelte es außerdem, den so genannten Spin der Silizium-Fehlstellenzentren unter Kontrolle zu bringen.
    „Insgesamt ist es uns erstmals gelungen, identische Photonen aus Silizium-Fehlstellenzentren zu produzieren, deren Ursprung nicht nachvollzogen werden kann“, resümiert Professor Jelezko. Damit sei die Voraussetzung für „Verschränkung“ erfüllt.

    Die Arbeit der Wissenschaftler aus Ulm und Tsukuba (Japan) ist unter anderem mit Mitteln der Europäischen Union/des europäischen Forschungsrats, der Deutschen Forschungsgemeinschaft und des Bundesministeriums für Bildung und Forschung (BMBF) unterstützt worden.

    Weitere Informationen:
    Kay Daniel Jahnke. Tel.: 0731/50-15705, kay.jahnke@alumni.uni-ulm.de

    L. J. Rogers, K. D. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov,
    H. Schauffert, C. Kranz, J. Isoya, L. P. McGuinness, and F. Jelezko: Multiple intrinsically identical single photon emitters in the solid-state. Nature Communications. DOI: 10.1038/ncomms5739


    Images

    Dr. Lachlan Rogers (rechts) und Kay Daniel Jahnke im Labor mit einem Kühlgerät (Kryostat). Hier wurden Experimente für die aktuelle Publikation durchgeführt
    Dr. Lachlan Rogers (rechts) und Kay Daniel Jahnke im Labor mit einem Kühlgerät (Kryostat). Hier wurd ...
    Foto: Rogers/Uni Ulm
    None

    Zwei Silizium-Fehlstellenzentren im Kristallgitter eines Diamanten, die identische Photonen produzieren
    Zwei Silizium-Fehlstellenzentren im Kristallgitter eines Diamanten, die identische Photonen produzie ...
    Abbildung: Rogers/Uni Ulm
    None


    Attachment
    attachment icon Prof. Dr. Fedor Jelezko

    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results
    German


     

    Dr. Lachlan Rogers (rechts) und Kay Daniel Jahnke im Labor mit einem Kühlgerät (Kryostat). Hier wurden Experimente für die aktuelle Publikation durchgeführt


    For download

    x

    Zwei Silizium-Fehlstellenzentren im Kristallgitter eines Diamanten, die identische Photonen produzieren


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).