idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/26/2014 11:51

Nicht nur Dünger, sondern auch Kraftstoff

Rudolf-Werner Dreier Presse- und Öffentlichkeitsarbeit
Albert-Ludwigs-Universität Freiburg im Breisgau

    Freiburger Forscher klären auf, wie ein stickstofffixierendes Enzym zusätzlich Kohlenwasserstoffe produziert

    Zum Wachsen brauchen Pflanzen Stickstoff und Kohlenstoff. Dank der Photosynthese beziehen Pflanzen letzteren aus der Luft, doch Stickstoff müssen sie in Form von organischen Molekülen wie Ammoniak oder Harnstoff über die Wurzeln aufnehmen. Auch wenn Stickstoff 80 Prozent des Volumens der Erdatmosphäre ausmacht, kann die Pflanze erst in gebundener Form darauf zugreifen. In der Landwirtschaft wird deswegen Dünger verwendet, der Stickstoff für Pflanzen bereitstellt. Die einzigen Lebewesen, die Stickstoff aus der Luft in nutzbare Moleküle umwandeln können, sind Mikroorganismen – zum Beispiel Knöllchenbakterien. Sie besitzen das Enzym Nitrogenase, das den Stickstoff mit Wasserstoff zu Ammonium verbindet. Prof. Dr. Oliver Einsle und Dr. Thomas Spatzal haben nicht nur die Funktionsweise des Enzyms weiter aufgeklärt, sondern auch einen einzigartigen Mechanismus beschrieben, mit dem es Kohlenwasserstoffe produziert.

    „Wir wollen die Reaktionen in der Nitrogenase verstehen, um sie in Zukunft biotechnologisch nutzbar zu machen. Derzeit kann die Hälfte der Menschheit nur mit dem Einsatz von Düngemitteln in der Landwirtschaft ernährt werden. Das verbraucht etwa ein Prozent der Weltenergieproduktion“, erklärt Einsle. Die Forscher zeigten zum ersten Mal, wie Nitrogenase Kohlenstoff mit Wasserstoff verbindet. Dabei entstehen Moleküle, die Biotreibstoffen ähneln. „Somit wird das Enzym auch für die nachhaltige Energieproduktion interessant“, so Einsle.
    Einsle erforscht die Feinstruktur des Herzstücks des Enzyms: ein großes Metallzentrum namens Eisen-Molybdän-Cofaktor (FeMoco). Einsle, Spatzal, und Prof. Dr. Douglas Rees Pasadena/USA erstellten eine Kristallstruktur, die zeigt, wie ein Kohlenmonoxid-Molekül (CO) an FeMoco bindet. „Dort verdrängt es unerwarteter Weise ein Schwefelatom, das vorher die gleiche Position in dem Metallzentrum besetzt hatte. Damit ergeben sich erstmals Rückschlüsse darauf, wie das Zentrum mit anderen Molekülen reagiert“, beschreibt Einsle die Ergebnisse, die in der Fachzeitschrift Science erscheinen.

    „Eine derartige chemische Umlagerung wurde in einem biologischen System nie zuvor beobachtet“, erklärt Einsle weiter. Seit 2010 ist bekannt, dass CO die Nitrogenase hemmt und dass das Enzym das Gas in geringem Maße in Kohlenwasserstoffe umwandelt. Indem die Forscher das Enzym während der Stickstoffreaktion mit CO begasten, fanden sie eine Bindestelle für CO und konnten die Umlagerung dokumentieren. Neben dem sogenannten „Haber-Bosch-Prozess der Stickstofffixierung“ fördert die Nitrogenase somit auch eine Reaktion, die der „Fischer-Tropsch-Synthese von Kohlenwasserstoffen“ entspricht, mit der großtechnisch Treibstoffe zum Beispiel aus Industrieabgasen nachhaltig synthetisiert werden können. „Die neue Strukturanalyse beschreibt erstmals den Mechanismus dieser ungewöhnlichen Reaktivität“, so Einsle.

    Oliver Einsle ist Professor am Institut für Biochemie der Universität Freiburg und Mitglied des Exzellenzclusters BIOSS Centre for Biological Signalling Studies der Universität Freiburg. Thomas Spatzal hat seine Doktorarbeit in Freiburg beendet und forscht nun am California Institute of Technology, in Pasadena/USA mit Douglas Rees.

    Originalpublikation:
    Thomas Spatzal, Kathryn A. Perez, Oliver Einsle, James B. Howard, Douglas C. Rees (2014) Ligand binding to the FeMo-cofactor: Structures of CO-bound and reactivated nitrogenase. Science DOI: 10.1126/science.1256679
    www.sciencemag.org/content/345/6204/1620.full

    Mehr Informationen zur Forschung von Prof. Dr. Oliver Einsle erhalten Sie im uni'wissen-Artikel "Stickstoff aus Wurzeln", dem Wissensmagazin der Universität Freiburg.
    www.pr.uni-freiburg.de/publikationen/uniwissen/uni-wissen-02-12-komplett-261112-rz-web.pdf

    Kontakt:
    Prof. Dr. Oliver Einsle
    Institut für Biochemie
    Albert-Ludwigs-Universität Freiburg
    Tel.: 0761/203-6058
    E-Mail: einsle@biochemie.uni-freiburg.de


    More information:

    http://www.pr.uni-freiburg.de/pm/2014/pm.2014-09-26.100


    Images

    Einsle und sein Team entwickelten diese neue Kristallstruktur des Metallzentrums der Nitrogenase. Das Modell zeigt, wie Kohlenmonoxid (CO) ein Schwefelatom verdrängt.
    Einsle und sein Team entwickelten diese neue Kristallstruktur des Metallzentrums der Nitrogenase. Da ...
    (Quelle: Oliver Einsle)
    None


    Criteria of this press release:
    Journalists
    Biology, Chemistry, Environment / ecology, Zoology / agricultural and forest sciences
    transregional, national
    Research results, Scientific Publications
    German


     

    Einsle und sein Team entwickelten diese neue Kristallstruktur des Metallzentrums der Nitrogenase. Das Modell zeigt, wie Kohlenmonoxid (CO) ein Schwefelatom verdrängt.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).