idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/15/2014 17:38

Supermagnetfeld auf engstem Raum

Dr. Joerg Harms Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

    Die Kraft des stärksten Dauermagneten der Welt in einem Fleck so groß wie ein Atom. Diese rekordverdächtige Konstellation ist einem Forscherteam mit einem raffinierten Nano-Experiment geglückt. Die Physiker vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg und vom Max-Planck-Institut für Festkörperforschung in Stuttgart sind in der Lage, eine aus drei Atomen bestehende Eisenkette mit einer feinen Mikroskopspitze gezielt magnetisch umzupolen. Der neue Effekt könnte die Entwicklung des Quantencomputers beflügeln und alternative Konzepte für künftige Speichermedien erschließen. Die Wissenschaftler zeigen ihre Ergebnisse am 15. Dez. im Fachmagazin Nature Nanotechnology.

    Zunächst kreierten die Physiker eine bemerkenswerte Nanostruktur: Auf einer glatten Kupferoberfläche formierten sie mit der feinen Spitze eines Rastertunnelmikroskops drei Eisenatome zu einer kurzen Kette. Dadurch entstand ein winziger Nanomagnet. Als nächstes pickten sie mit ihrem Mikroskop weiteres Eisen auf – mit dem Effekt, dass ein paar Eisenatome an der Spitze haften blieben und sie dadurch magnetisch machten. Dann manövrierten die Forscher die Spitze sehr dicht und mit hoher Präzision über die Eisenkette. Da sich mit dem Mikroskop extrem schnelle Prozesse messen lassen, konnte das Team analysieren, was sich innerhalb von Nanosekunden in der Eisenkette abspielte. Das überraschende Ergebnis: „Abhängig von der Position der Mikroskopspitze konnten wir das Magnetfeld der Eisenkette kurzzeitig umpolen“, beschreibt Gruppenleiter Sebastian Loth. „Wir waren verblüfft, wie gut das funktioniert.“

    Die Erklärung: Aufgrund eines Quanteneffekts baut sich zwischen Mikroskopspitze und Eisenkette ein Magnetfeld mit besonderen Eigenschaften auf. „Einerseits ist es äußerst stark, andererseits räumlich sehr begrenzt“, sagt Loths Kollege Shichao Yan, Erstautor der Studie. Die Stärke erreicht einen Wert von einigen Tesla, mehr als der beste Dauermagnet. Dagegen beschränkt sich die Ausdehnung des Feldes auf den Bereich eines Atomdurchmessers. „Durch diese räumliche Begrenzung können wir winzigste Nanostrukturen gezielt ansteuern“, erläutert Loth. „Ein einzelnes Atomgrüppchen lässt sich umpolen, seine Nachbarschaft bleibt dagegen völlig unbeeinflusst.“

    Das macht den neuen Effekt für zwei Einsatzfelder interessant. So könnte er sich als Kontrollprozess für Quantenbits eignen – der Schalteinheit eines neuartigen Rechnertyps, des Quantencomputers. Ein gewöhnlicher PC rechnet mit Bits, also mit Schalteinheiten, die entweder auf „Null“ oder auf „Eins“ stehen. Ein Quantencomputer dagegen basiert auf dem Quantenbit. Dieses kann nicht nur Eins oder Null sein, sondern auch sämtliche Werte dazwischen annehmen, was künftig höhere Rechengeschwindigkeiten erlauben soll. Bislang jedoch gibt es nur relativ primitive Labor-Prototypen – was unter anderem daran liegt, dass sich die Quantenbits nicht präzise genug ansteuern lassen. „Hier könnte der neue Effekt für Fortschritte sorgen“, sagt Loth. „Mit seiner Hilfe könnte man einzelne magnetische Quantenbits gezielt kontrollieren.“ Die dreiatomige Eisenkette zeigt bereits einige Eigenschaften eines Quantenbits. Nun denken die Forscher darüber nach, wie sich diese Eigenschaften weiter ausbauen lassen.

    Doch auch für die Datenspeicherung könnte das Phänomen relevant sein. Denn je mehr Magnetbits man pro Fläche beschreiben und auslesen kann, umso höher ist die Speicherkapazität eines Mediums. „Mit unserem Verfahren lassen sich extrem kleine Nanostrukturen magnetisch ansteuern“, sagt Yan. „Rein theoretisch wäre es damit möglich, die Speicherdichte um einige Größenordnungen zu steigern.“ Dafür allerdings würden die dreiatomige Eisenketten, mit denen die Forscher bislang experimentierten, nicht taugen: Sie lassen sich zwar effizient umpolen, verlieren ihre Information aber innerhalb von Mikrosekunden wieder. Deshalb wollen die Forscher den neuen Effekt nun an Nanostrukturen anwenden, die das Zeug zu stabilen Magnetbits haben.


    More information:

    http://www.mpsd.mpg.de/en/research/cmd/dnes - Forschungsgruppe Dr. Sebastian Loth
    http://dx.doi.org/10.1038/nnano.2014.281 - Original Publikation


    Images

    Shichao Yan am Kontrollterminal des Raster-Transmissionselektronenmikroskopes (STEM) das eine Kette aus 3 Eisenatomen zeigt.
    Shichao Yan am Kontrollterminal des Raster-Transmissionselektronenmikroskopes (STEM) das eine Kette ...
    Foto: MPSD/J.M. Harms
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Information technology, Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Shichao Yan am Kontrollterminal des Raster-Transmissionselektronenmikroskopes (STEM) das eine Kette aus 3 Eisenatomen zeigt.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).