idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/01/2015 20:51

Ein Quantum Licht für die Materialwissenschaften

Dr. Michael Grefe Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

    Bisher wurde in Computersimulationen zur Vorhersage des Einflusses elektromagnetischer Strahlung auf Moleküle, Nanostrukturen oder Festkörper angenommen, dass Licht sich klassisch verhält. Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie am CFEL in Hamburg und des Fritz-Haber-Instituts der Max-Planck-Gesellschaft in Berlin haben nun gezeigt, wie man in solchen Simulationen die Quantennatur des Lichts berücksichtigt. Die heute in der Fachzeitschrift Proceedings of the National Academy of Sciences veröffentlichte Methode könnte in Zukunft dafür genutzt werden, Materialeigenschaften gezielt mit Photonen zu verändern.

    Atome, Moleküle und Festkörper bestehen aus positiv geladenen Kernen und negativ geladenen Elektronen. Die meisten physikalischen und chemischen Eigenschaften von Materie werden durch die Wechselwirkung dieser fundamentalen Bestandteile bestimmt. Die elektrisch geladenen Teilchen interagieren dabei, indem sie Photonen, die Quantenteilchen des elektromagnetischen Feldes, austauschen. Wie dies geschieht, wird durch die Gleichungen der Quantenelektrodynamik beschrieben. Da diese Gleichungen ausgesprochen schwer zu lösen sind, muss man sie stark vereinfachen, um sie auf reale Materialen anwenden zu können. So nimmt man in der Quantenchemie oder der Festkörperphysik üblicherweise an, dass man die Quantennatur des Lichts vernachlässigen kann. Obwohl diese Annahme oft gerechtfertigt ist, haben kürzlich durchgeführte Experimente gezeigt, dass die Quanteneigenschaft des Lichts das Verhalten von Materialien in bestimmten Situationen dramatisch verändern kann.

    Herkömmliche Computersimulationen komplexer Quantensysteme behandeln elektromagnetische Strahlung jedoch klassisch. Um auch in solchen Situationen Vorhersagen treffen zu können, haben Wissenschaftler der Theorieabteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie, geleitet von Prof. Angel Rubio, eine neue Simulationsmethode vorgeschlagen, welche die Quantennatur des Lichts berücksichtigt. In ihrem neuen Ansatz beschreiben die Wissenschaftler das System aus geladenen Teilchen und Photonen als Quantenflüssigkeit. Hierbei bilden die Teilchen einen Ladungsstrom, der ein klassisches elektromagnetisches Feld erzeugt, welches wiederum auf sehr komplexe Weise auf den Ladungsstrom zurückwirkt. In der aktuellen Arbeit zeigen die Forscher wie dieser Ansatz das Verhalten eines stark mit den Photonen wechselwirkenden Elektrons auf einer Oberfläche richtig beschreiben kann. „Der Vorteil dieser Formulierung des gekoppelten Elektronen-Photonen Problems ist, dass man Näherungen finden kann, die Teilchen und Photonen gleichermaßen beschreiben“, sagt Johannes Flick, einer der Hauptautoren der Arbeit. „Dadurch ergibt sich die Möglichkeit neuartiger Computersimulationen, welche die Photonen nicht vernachlässigen, aber nach wie vor einfach und praktikabel bleiben“, fügt Michael Ruggenthaler, Zweitautor der Studie, hinzu. Als nächsten Schritt will Rubios Team die entwickelte Methode verwenden, um komplexe Quantensysteme in Situationen zu untersuchen, in denen Photonen vermutlich eine wichtige Rolle spielen. Dadurch wollen sie verstehen wie die Quantennatur des Lichts die Eigenschaften von Materialien verändert. Dies könnte in Zukunft neue Wege eröffnen, um chemische Reaktionen in komplexen Systemen wie Biomolekülen zu kontrollieren und neue Materiezustände zu finden.

    Ansprechpartner:
    Dr. Michael Ruggenthaler
    Max-Planck-Institut für Struktur und Dynamik der Materie
    Center for Free-Electron Laser Science
    Luruper Chaussee 149
    22761 Hamburg
    Germany
    +49 (0)40 8998-6554
    michael.ruggenthaler@mpsd.mpg.de

    Originalpublikation:
    J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio, “Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space,” Proceedings of the National Academy of Sciences (2015), DOI: 10.1073/pnas.1518224112


    More information:

    http://dx.doi.org/10.1073/pnas.1518224112 Originalpublikation
    http://www.mpsd.mpg.de/115242/theod Forschungsgruppe von Prof. Dr. Angel Rubio
    http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie


    Images

    Die Ladungsdichte eines Elektrons (in blau) verändert sich durch die Wechselwirkung mit Photonen (in rot).
    Die Ladungsdichte eines Elektrons (in blau) verändert sich durch die Wechselwirkung mit Photonen (in ...
    Grafik: © J.M. Harms/MPSD
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Biology, Chemistry, Materials sciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Die Ladungsdichte eines Elektrons (in blau) verändert sich durch die Wechselwirkung mit Photonen (in rot).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).