idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/31/2017 17:00

Building better brains: A bioengineered upgrade for organoids

Mag. Ines Méhu-Blantar IMBA Communications
IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

    Scientists for the first time combine organoids with bioengineering. Using small microfilaments, they show improved tissue architecture that mimics human brain development more accurately and allows more targeted studies of brain development and its malfunctions, as reported in the current issue of Nature Biotechnology.

    A few years ago, Jürgen Knoblich and his team at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) have pioneered brain organoid technology. They developed a method for cultivating three-dimensional brain-like structures, so called cerebral organoids, in a dish. This discovery has tremendous potential as it could revolutionize drug discovery and disease research. Their lab grown organ-models mimic early human brain development in a surprisingly precise way, allowing for targeted analysis of human neuropsychiatric disorders, that are otherwise not possible. Using this cutting-edge methodology, research teams around the world have already revealed new secrets of human brain formation and its defects that can lead to microcephaly, epilepsy or autism.

    In a new study published in Nature Biotechnology, scientists from Cambridge and Vienna present a new method that combines the organoid method with bioengineering. The researchers use special polymer fibers made of a material called PLGA) to generate a floating scaffold that was then covered with human cells. By using this ground-breaking combination of engineering and stem cell culture, the scientists are able to form more elongated organoids that more closely resemble the shape of an actual human embryo. By doing so, the organoids become more consistent and reproducible.

    „This study is one of the first attempts to combine organoids with bioengineering. Our new method takes advantage of and combines the unique strengths of each approach, namely the intrinsic self-organization of organoids and the reproducibility afforded by bioengineering. We make use of small microfilaments to guide the shape of the organoids without driving tissue identity, “explains Madeline Lancaster, group leader at MRC Laboratory of Molecular Biology in Cambridge and first author of the paper.

    This guided self-organization allows engineered cerebral organoids, or enCORs, to more reproducibly form cerebral cortical tissue but maintain the tissue complexity and overall size that comes about when the tissues are still allowed to develop according to intrinsic developmental programs. As a result, enCORs also develop later tissue architecture that more faithfully models the organization seen in an actual developing brain.

    Jürgen Knoblich, deputy scientific director of IMBA and last author on the paper, elucidates the implications of the novel technology: “An important hallmark of the bioengineered organoids is their increased surface to volume ratio. Neurons ‘have more space’ and can properly migrate and position themselves in a layer that in an actual developing brain would later become the grey matter. Because of their improved tissue architecture, enCORs can allow for the study of a broader array of neurological diseases where neuronal positioning is thought to be affected, including lissencephaly (smooth brain), epilepsy, and even autism and schizophrenia.”

    Original Publication:
    "Guided self-organization and cortical plate formation in human brain organoids." Madeline A. Lancaster, Nina S. Corsini, Simone Wolfinger, E. Hilary Gustafson, Alex Phillips, Thomas R. Burkard, Tomoki Otani, Frederick J. Livesey, Juergen A. Knoblich
    Nature Biotechnology, doi:10.1038/nbt.3906

    About IMBA
    IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna Biocenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research.
    www.imba.oeaw.ac.at

    About the Vienna BioCenter
    The Vienna BioCenter (VBC) is a leading life sciences location in Europe, offering an extraordinary combination of research, education and business on a single campus. About 1,600 employees, more than 1,000 students, 93 research groups, 16 biotech companies, and scientists from more than 40 nations create a highly dynamic environment.
    www.viennabiocenter.org


    More information:

    http://de.imba.oeaw.ac.at/index.php?id=516


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).