idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/15/2018 21:00

Study: Pulsating dissolution found in crystals

Ulrike Prange Pressestelle
MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

    Pulsing rings are found in surface reaction rate maps of dissolving crystals

    When German researchers zoomed in to the nanometer scale on time-lapse images of dissolving crystals, they found a surprise: Dissolution happened in pulses, marked by waves that spread just like ripples on a pond.

    "What we see are waves or rings," said lead investigator Cornelius Fischer, who conducted this research at MARUM - Center for Marine Environmental Sciences at the University of Bremen in the group of Prof. Andreas Lüttge. "We have a pit in the middle, and then around these pits are rings of mass removal."
    The research is described online in the Early Edition of the Proceedings of the National Academy of Sciences. Fischer and Lüttge are specialized in studying minerals-fluid interactions, and are collaborating for more than 15 years in the US and Germany.
    In everyday life, dissolving crystals is as simple as stirring sugar into a glass of water. And as any child who has made rock candy knows, the process also works in reverse: Crystals of sugar will form as water evaporates from the glass.

    Lüttge said scientists have long known that crystals -- like rock candy or the calcite found in limestone -- form through a continuous process as molecules are deposited from solution into the regular crystal lattice of the solid they're becoming. "We always thought dissolution was a continuous process, kind of like crystal formation in reverse, and we were astonished when these experiments showed this was not a continuous process,"

    Fischer said. "Instead, what we saw were pulses occurring around these pits." The pulses show up clearly in rate maps, high-resolution still images that capture the rate at which material dissolves over time from the surface of a crystal. In experiments at MARUM, Cornelius Fischer modified an imaging technique called "vertical scanning interferometry" that Lüttge pioneered at Rice University (Houston, USA) in the early 2000s to make "surface reaction rate maps."

    "The maps show the distribution of the material flux and thus illustrate the surface reactivity," said Fischer, a former MARUM postdoctoral researcher who's now head of a research group at the independent German research laboratory Helmholtz-Zentrum Dresden-Rossendorf in Leipzig. "During the routine analysis of rate-map data, we discovered the existence of a remarkable pattern of surface reactivity. This was the starting point for a systematic analysis of pulsating rate map features."

    Using samples of first zinc oxide and later calcium carbonate, Fischer made maps that showed every dip and rise on the surface of crystal to a resolution of 1 nanometer or one-billionth of a meter. Each scan collected more than 4 million measurements from a surface measuring no more than a square centimeter. Taking subsequent snapshots of a crystal's surface as it dissolved allowed to measure the rate at which the crystal dissolved as a function of surface height.

    Scientists have long understood the importance that tiny surface defects play in crystal dissolution. Miniscule divots called etch pits expose crystal edges and increase the likelihood that a solvent, like water, will chemically react with atoms from the crystal. The process is similar to how rust eats away at iron or steel.

    When they examined their rate maps for dissolving calcite and zinc oxide crystals, Lüttge and Fischer found "rhythmic fluctuations of the reactive surface site density," or dissolution pulses that spread like rings from etch pits and screw dislocations, much like ripples that spread from the point where a pebble is dropped into a pond.

    "The complex superimposition of pulses defines the overall result, and we are now able to understand -- and, most importantly, to quantify -- such patterns as the starting point for the formation of porosity in solid materials during dissolution," Fischer said. Lüttge said the discovery adds to scientists' fundamental understanding of crystal dissolution and could aid researchers in fields as diverse as corrosion prevention and pharmaceutical manufacturing.

    Original publication:
    Cornelius Fischer and Andreas Lüttge: Pulsating dissolution of crystalline matter. Proceedings of the National Academy of Sciences 2018,
    DOI:10.1073/pnas.1711254115

    Contakt:
    Cornelius Fischer
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institut für Ressourcenökologie
    Leiter der Abteilung Reaktiver Transport an der HZDR-Forschungsstelle Leipzig
    Phone: 0049 351 260-4660
    Email: c.fischer@hzdr.de

    Andreas Lüttge
    MARUM-Zentrum für Marine Umweltwissenschaften, Universität Bremen
    Email: aluttge@marum.de

    More informationen:
    Ulrike Prange
    MARUM Presse- und Öffentlichkeitsarbeit
    Telefon: 0049 421 218 65540
    Email: medien@marum.de

    MARUM aims at un­der­stan­ding the role of the oce­ans in the Ear­t­h’s sys­tem by em­ploy­ing sta­te-of-the-art me­thods. It ex­ami­nes the si­gni­fi­can­ce of the oce­ans wi­t­hin the frame­work of glo­bal chan­ge, quan­ti­fies in­ter­ac­tions bet­ween the ma­ri­ne geo­s­phe­re and bio­s­phe­re, and pro­vi­des in­for­ma­ti­on for sustainable use of the oce­an. MARUM com­pri­ses the DFG re­se­arch cen­ter and the clus­ter of ex­cel­lence "The Oce­an in the Earth Sys­tem".


    More information:

    http://www.marum.de/en/index.html


    Images

    Criteria of this press release:
    Journalists
    Geosciences, Oceanology / climate
    transregional, national
    Research projects, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).