idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/12/2018 17:00

Freie Sauerstoffradikale: Die gute Aufgabe der Bösewichte

Dr. Mareike Kardinal Pressestelle
Hertie-Institut für klinische Hirnforschung (HIH)

    Bei Rückenmarksverletzungen sind sie für die Heilung von geschädigten Nervenzellen unerlässlich, berichten Tübinger Forscher

    Zellalterung, Krebs, Parkinson und Alzheimer - mit freien Sauerstoffradikalen werden meist Krankheiten in Verbindung gebracht. Die Moleküle scheinen jedoch auch positive Aufgaben zu besitzen: Bei Rückenmarksverletzungen spielen sie eine unerlässliche Rolle im Heilungsprozess. Das berichtet ein internationales Forscherteam unter der Leitung von Professor Dr. Simone Di Giovanni vom Hertie-Institut für Klinische Hirnforschung, der Universität Tübingen und dem englischen Imperial College London. In der aktuellen Ausgabe von Nature Cell Biology beschreiben die Forscher, wie verletzte Nervenzellen gezielt ein Enzym aufnehmen, dass freie Sauerstoffradikale bildet. Die entstehenden Radi-kale setzen anschließend Prozesse in Gang, die der Regenerierung der Zellen dienen. "Behandlungen, die nach einer Nervenverletzung darauf abzielen, die Produktion freier Sauerstoffradikale einzuschränken, könnten tatsächlich nachteilig sein", erklärt Di Giovanni. "Der genaue Zeitpunkt und die richtige Dosis müssen wohl berücksichtigt werden." Unklar bleibt, ob eine höhere Menge an freien Sauerstoffradikalen den Heilungs-prozess noch verbessern kann.

    In der aktuellen Studie beobachteten die Wissenschaftler, wie körpereigene Abwehrzellen - sogenannte Makrophagen - nach einer Verletzung ein Enzym mit dem Namen NOX2 ins Gewebe absondern. "NOX2 wird anschließend vom Axon, dem Nervenzellfortsatz, der verletzten Zellen aufgenommen und in kleinen Vesikeln Richtung Zellkörper transportiert", beschreibt Di Giovanni. "Es erzeugt freie Sauerstoffradikale, indem es eine Reihe von Proteinen oxidiert. Durch sie werden im Zellkörper Signalwege angeregt, an dessen Enden die Regenerierung des Axons und das Wachstum weiterer Zellfortsätze steht."

    Noch sind die komplexen molekularen und zellulären Prozesse, die sich nach einer Verletzung an Nerven oder im Rückenmark abspielen, nicht vollständig verstanden. Die aktuelle Studie fügt jedoch ein weiteres Puzzleteil zum Gesamtbild hinzu. Rückenmarksverletzungen gehen oftmals mit lebenslangen Lähmungen einher. Sind die Nervenfasern einmal durchtrennt, leiten sie kein Gehirnsignal mehr an Muskeln in Bein oder Arm weiter. Derzeit gibt es keine Therapie, die Nervenfasern reparieren kann. "Je besser wir aber verstehen, was im Körper vor sich geht, desto einfacher werden wir Strategien entwickeln können", so Di Giovanni.

    Die Studie des Tübinger Wissenschaftlers leitet auch ein Umdenken in der Forschung mit ein. "Bisher assoziierten wir freie Sauerstoffradikale vor allem mit Schäden an Nerven und Rückenmark", sagt Di Giovanni. "Die Moleküle gehen unkontrolliert chemische Reaktionen mit Proteinen und DNA ein und zerstören so Zellmembranen und Erbgut. Jetzt müssen wir ihnen tatsächlich aber auch positive Aufgaben zuschreiben." Neben den aktuellen Ergebnissen gibt es in jüngster Zeit Hinweise, dass die Moleküle unter anderem eine Rolle beim Wachstum von Nervenzellen im Hippocampus, der Gedächtniszentrale im Gehirn, spielen. Ebenso scheinen sie an zellulären Signalwegen bei der Wundheilung in Zebrafi-schen beteiligt zu sein. In einer künftigen Studie möchte Di Giovanni erforschen, was passiert, wenn er die Produktion von freien Sauerstoffradikalen durch NOX2 erhöht. "Wenn wir Glück haben verbessert dies sogar den Heilungsprozess in den Zellen."

    Originalpublikation
    Hervera et al., (2018): Reactive oxygen species regulate axonal regen-eration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nature Cell Biology
    DOI: 10.1038/s41556-018-0039-x


    More information:

    https://www.hih-tuebingen.de Hertie-Institut für klinische Hirnforschung
    https://www.uni-tuebingen.de Eberhard Karls Universität Tübingen


    Images

    Ein geschädigter Ischiasnerv. Das Enzym NOX2 (rot) produziert die zur Regeneration benötigten freien Sauerstoffradikale. Es wird von Axonen (grün) der verletzten Nervenzellen aufgenommen.
    Ein geschädigter Ischiasnerv. Das Enzym NOX2 (rot) produziert die zur Regeneration benötigten freien ...
    Copyright: Simone Di Giovanni und Luming Zhou, 2018
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Biology, Medicine
    transregional, national
    Research results
    German


     

    Ein geschädigter Ischiasnerv. Das Enzym NOX2 (rot) produziert die zur Regeneration benötigten freien Sauerstoffradikale. Es wird von Axonen (grün) der verletzten Nervenzellen aufgenommen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).