idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/25/2018 17:00

New mechanism for the plant hormone auxin discovered

Dr. Elisabeth Guggenberger Communications and Events
Institute of Science and Technology Austria

    Study in Nature Plants reveals a new mechanism in roots’ response to gravity.
    Auxin is a hormone that is essential for the development of plants as it controls a wide range of processes from shaping the embryo in the seed to branching of the growing plant. Previously, it was believed that auxin’s main signaling mechanism operated in the cell nucleus and acted only by regulating gene transcription. Now, scientists led by Jiří Friml at the Institute of Science and Technology Austria (IST Austria) have demonstrated that another mechanism exists, and that cells in the roots must be able to respond to auxin immediately. This mechanism enables rapid adaption of root growth direction.

    When the seed of a plant germinates, its root needs to quickly establish the direction of gravity and bend to grow deeper inside the soil, where it can anchor itself, and find water and nutrients. In order to bend, cell growth is allowed to continue on one side of the root while being inhibited on the other. This inhibition was known to be triggered by the hormone auxin and to happen very quickly, but the exact reaction times were difficult to measure. Using an innovative setup, the researchers could now measure the time roots need to react to changes in the auxin concentration precisely. They concluded that the extremely rapid adaption of growth rate was far too fast to be explained by the gene transcription mechanism, and therefore must involve a correspondingly rapid perception mechanism.

    New branch in an old pathway

    But the new mechanism is not entirely unknown. Components of the well-studied pathway, the TIR1 receptor, are needed for the newly discovered mechanism. “With our experimental setup, we proved that the signaling is indeed non-transcriptional, but we have seen that components of the original transcriptional pathway are needed,” explains Jiří Friml, Professor at IST Austria and leader of the research group. “This means that we are not looking at an entirely new pathway but at a new branch of the canonical pathway,” he adds.

    With a flipped-over microscope and liquid-filled microchannels

    With a microscope that was flipped on its side—a method that was developed previously by the same research group and that led to the production of a breathtaking video of growing roots that won last year’s “Nikon Small World in Motion Competition” (see link)—the team was able to observe the roots grow in their natural orientation. But measuring the reaction time required further development of the technique: they needed to be able to quickly change the solution the roots grow in.

    “Normally, people would apply the auxin and then mount the sample to the microscope, but with this method, they would lose precious seconds or even minutes—and exactly those first few minutes are the ones that were essential for this study,” explains Matyáš Fendrych, leading author of the study, former postdoc in Jiří Friml’s group and now assistant professor at the Charles University in Prague. The solution found by the team was to let the roots grow in microscopic channels filled with the desired liquid. “This allowed us to change the auxin concentration and immediately measure the root’s reaction,” he adds.

    Original publication:
    Matyáš Fendrych, et al: “Rapid and reversible root growth inhibition by TIR1 auxin signaling”, nature plant, DOI: 10.1038/s41477-018-0190-1

    IST Austria
    The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at


    More information:

    http://ist.ac.at/research/research-groups/friml-group/ Research group of Prof Friml
    https://www.nikonsmallworld.com/news/timelapse-of-dancing-plant-root-wins-2017-n... Winner of Nikon's Small World in Motion Competition


    Images

    A growing root observed by the research team. Colors are caused by a fluorescent auxin reporter in the nuclei of the cells. Red indicates high amounts of auxin, green indicates low amounts.
    A growing root observed by the research team. Colors are caused by a fluorescent auxin reporter in t ...
    Matouš Glanc
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology
    transregional, national
    Research results
    English


     

    A growing root observed by the research team. Colors are caused by a fluorescent auxin reporter in the nuclei of the cells. Red indicates high amounts of auxin, green indicates low amounts.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).