idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/14/2019 17:00

Relay station in the brain controls our movements

Heike Sacher, Biozentrum Kommunikation & Marketing
Universität Basel

    The relay station of the brain, the substantia nigra consists of different types of nerve cells and is responsible for controlling the execution of diverse movements. Researchers at the University of Basel’s Biozentrum have now characterized two of these cell populations more precisely and has been able to assign an exact function to each of them. The results of the study have now been published in Cell Reports.

    Whether we move our arms, legs or the entire body, every movement is centrally controlled by our brain. Different brain regions and neuronal networks play an essential role in this process. This includes the substantia nigra, which has been minimally investigated so far. Like a relay station, this region receives and distributes signals in order to appropriately orchestrate the execution of a desired movement. Using a mouse model, Prof. Kelly Tan's research group at the Biozentrum, University of Basel, has now identified two cell populations in the substantia nigra that are responsible for different aspects of locomotion.

    Correct movement thanks to teamwork of neuron populations

    The research team investigated the substantia nigra anatomically, genetically and functionally. It became apparent that this region consists of several different types of nerve cells. The researchers could identify two of the populations and describe them in more detail. While one population is responsible for initiating a motor task, the second population ensures the continuity of the desired movement. “The heterogeneity of neuronal populations in the brain, also in the substantia nigra, is a well acknowledged concept. In our study, not only we decipher the function of two nerve cell groups, but we also show that they work together to produce correct locomotion,” says Giorgio Rizzi, first author of the study.

    Signals for movement control are interrupted in Parkinson’s disease

    The findings of the study are also important in regard to Parkinson’s disease. Patients suffer from motor control abnormalities because certain nerve cells degenerate. “Interestingly these cells are interaction partners of the population we identify as essential for movement initiation. This means that the signals of the cell population are no longer received and transmitted; and this dysfunction may underlie the movement initiation impairment symptom observed in Parkinson’s disease patients,” says Kelly Tan.

    In the future, the research team aims to continue identifying other cell populations of the substantia nigra and elucidate their motor functions. “With regard to Parkinson's disease, we will assess how each network is altered as a result of the disease and how this affects movement. If we understand the circuit modifications, we may find a way to tackle this neurodegenerative disorder and relieve the symptoms of Parkinson's disease patients,” states Kelly Tan.


    Contact for scientific information:

    Prof. Dr. Kelly Tan, University of Basel, Biozentrum, Tel. +41 61 207 16 26, email: kelly.tan@unibas.ch


    Original publication:

    Giorgio Rizzi and Kelly R. Tan
    Synergistic Nigral Output Pathways Shape Movement
    Cell Reports (2019), doi: 10.1016/j.celrep.2019.04.068
    https://www.cell.com/cell-reports/fulltext/S2211-1247(19)30541-8


    Images

    Two cell populations in the substantia nigra that are responsible for different aspects of locomotion.
    Two cell populations in the substantia nigra that are responsible for different aspects of locomotio ...
    Image: University of Basel, Biozentrum
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Two cell populations in the substantia nigra that are responsible for different aspects of locomotion.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).