idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/10/2022 08:12

Forscherteam der TU Kaiserslautern entschlüsselt Mechanismen des atomaren Energietransports in der Quantenwelt

Julia Reichelt Universitätskommunikation
Technische Universität Kaiserslautern

    Der Transport von Energie zwischen Atomen und Molekülen ist Grundlage allen Lebens. Er basiert auf zwischenatomaren Kräften, der sogenannte Dipol-Dipol-Wechselwirkung. Der Arbeitsgruppe von Prof. Dr. Herwig Ott an der Technischen Universität Kaiserslautern (TUK) ist es nun gelungen, einen solchen Transportmechanismus in einem ungeordneten System nachzubilden. Dazu haben die Forschenden die quantenmechanische Wechselwirkung zwischen verschiedenen Rydberg-Atomen experimentell beobachtet. So konnten sie den Einfluss der Unordnung auf Verteilung und Mobilität der Anregungsenergie zwischen den Atomen nachvollziehen. Die Fachzeitschrift „Nature Communications“ hat die Ergebnisse veröffentlicht.

    Wie der Energietransport zwischen Atomen und Molekülen erfolgt, verdeutlicht beispielsweise die Photosynthese: Trifft Licht auf eine Zelle, wird dessen Energie zunächst von einem Molekül absorbiert und dann zwischen vielen weiteren, ungeordneten Molekülen weitertransportiert. Kommt dieses Energiepaket schließlich am sogenannten Reaktionszentrum an, erfolgt die dauerhafte Speicherung in Form einer chemischen Umwandlung.

    Um derartige Transportmechanismen besser zu verstehen, hat das Forscherteam einen besonderen Versuchsansatz gewählt und ist ins Quantenregime vorgedrungen: „Dabei haben wir mehrere technologische Herausforderungen überwunden“, erklärt Carsten Lippe, Erstautor der Studie. „Dies zeigt allein schon der Blick auf die notwendigen Rahmenbedingungen: Bei einem Umgebungsdruck, der etwa 1000-mal geringer ist als im Weltraum rund um die ISS, und bei Temperaturen nahe dem absoluten Nullpunkt werden einige Atome durch Bestrahlung mit Lasern angeregt und in einen sogenannten Rydberg-Zustand versetzt. In diesem Zustand, bei dem ein Elektron auf eine weit entfernte Umlaufbahn um den Atomkern gebracht wird, ist das Atom etwa 10000-mal größer als im Normalzustand.“

    Durch diese gigantische Größe wird ein Atom im Rydberg-Zustand sehr empfindlich für andere solche Atome und erlaubt somit Wechselwirkungen zwischen Atomen experimentell zu untersuchen, die sonst auf viel kleineren Längenskalen stattfinden würden.

    Im Rahmen ihres Experiments haben die Forschenden nun mithilfe von unterschiedlichen Lasersystemen nacheinander zwei verschiedene Arten von Rydberg-Atomen erzeugt und den Energietransport zwischen ihnen untersucht. Dabei sind sie auf quantenphysikalische Effekte gestoßen, die unserer alltäglichen Vorstellung widersprechen. „Klassisch kann man sich einen solchen Transportprozess als Hüpfprozess vorstellen. Die Energie bzw. Anregung springt also zwischen den Molekülen hin und her. In der Quantenphysik ist das aufgrund des sogenannten Superpositionsprinzips anders: Die Anregung kann zum Beispiel auch gleichzeitig auf mehrere Moleküle hüpfen und so viel effizienter in dem System transportiert werden. Man spricht dann von kohärentem Transport“, sagt Ott.

    Die Forscher konnten dabei zeigen, dass sich der Anteil aus klassischem Hüpfen und kohärentem Transport im Experiment kontrolliert einstellen lässt. Dies geschieht durch winzige Änderungen der Wellenlänge der verwendeten Anregungslaser. „Normalerweise sind quantenphysikalische Effekte fragil und verschwinden, sobald Störungen vorliegen, wie sie etwa im vorliegenden System durch die atomare Unordnung in dem Gas geben sind“, sagt Thomas Niederprüm, der gemeinsam mit Ott die Arbeit geleitet hat. „Dass in der Studie diese Effekte beobachtet werden konnten, kann helfen, andere komplexe Systeme besser zu verstehen. Dabei lässt sich die Wechselwirkung zwischen den Rydberg-Atomen auf andere Bereiche aktueller Forschung übertragen, zum Beispiel auf die Absorption den Transport von Licht in Molekülen bei der Photosynthese. Neueste Studien haben gezeigt, dass auch bei der Photosynthese quantenmechanische Effekte eine wichtige Rolle spielen und der Energietransport trotz der Unordnung erstaunlich verlustfrei stattfindet.

    Die Arbeiten zu dieser Studie fanden im Rahmen des Sonderforschungsbereichs OSCAR („Open System Control of Atomic and Photonic Matter“) statt, in dem die TUK gemeinsam mit der Universität Bonn von der Deutschen Forschungsgemeinschaft gefördert wird. Die Resultate der Messungen und Simulationen sowie eine Beschreibung des experimentellen Aufbaus sind in der renommierten Fachzeitschrift „Nature Communications“ erschienen:

    „Experimental realization of a 3D random hopping model“; Carsten Lippe, Tanita Klas,
    Jana Bender, Patrick Mischke, Thomas Niederprüm & Herwig Ott. Der englischsprachige
    Artikel ist kostenfrei verfügbar.
    DOI: doi.org/10.1038/s41467-021-27243-2

    Fragen beantwortet:
    Prof. Dr. Herwig Ott
    Fachgebiet Ultrakalte Quantengase und Quantenatomoptik / TU Kaiserslautern
    Tel.: 0631 205-2817
    E-Mail: ott@physik.uni-kl.de


    Contact for scientific information:

    Prof. Dr. Herwig Ott
    Fachgebiet Ultrakalte Quantengase und Quantenatomoptik / TU Kaiserslautern
    Tel.: 0631 205-2817
    E-Mail: ott@physik.uni-kl.de


    Original publication:

    „Experimental realization of a 3D random hopping model“; Carsten Lippe, Tanita Klas,
    Jana Bender, Patrick Mischke, Thomas Niederprüm & Herwig Ott. Der englischsprachige
    Artikel ist kostenfrei verfügbar.
    DOI: doi.org/10.1038/s41467-021-27243-2


    Images

    Ultrakalte Atomwolke aus Rubidiumatomen, die in diesem Experiment Verwendung finden: Zu sehen ist die Fluoreszenz, die während der Laserkühlung entsteht.
    Ultrakalte Atomwolke aus Rubidiumatomen, die in diesem Experiment Verwendung finden: Zu sehen ist di ...
    Foto: AG Ott/TUK


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Ultrakalte Atomwolke aus Rubidiumatomen, die in diesem Experiment Verwendung finden: Zu sehen ist die Fluoreszenz, die während der Laserkühlung entsteht.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).