idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/10/2022 11:13

Nanopartikel für eine sanftere Tumorbehandlung

Rainer Klose Kommunikation
Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

    Die Strahlentherapie ist einer der Eckpfeiler der Krebsbehandlung. Einige Tumorarten sprechen jedoch wenig bis kaum auf eine Bestrahlung an. Gelänge es, Tumorzellen empfindlicher zu machen, wäre die Behandlung wirksamer und sanfter. Empa-Forschenden ist es nun gelungen, Metalloxid-Nanopartikel als «Radiosensitizer» einzusetzen – und diese auch gleich im industriellen Massstab herzustellen.

    Bei einer Krebserkrankung stehen heute verschiedene Behandlungsmethoden zur Verfügung, die sich ergänzen können. Häufig angewendet wird die Strahlentherapie, die etwa mit einer Operation und einer Chemotherapie kombiniert werden kann. Zwar wird die Behandlung mit ionisierenden Strahlen seit über 100 Jahren in der Medizin eingesetzt, doch auch die moderne Onkologie ist zuweilen nicht zufrieden mit ihrer Wirksamkeit. Der Grund: Die bösartigen Tumore reagieren nicht immer empfindlich genug auf die Strahlung. «Könnte die Empfindlichkeit der Tumorzellen gesteigert werden, liesse sich die Radiotherapie wirksamer und schonender ausführen», sagt Empa-Forscher Lukas Gerken.
    Will heissen: Ein erwünschtes Behandlungsziel könnte mit einer niedrigeren Strahlendosis als derzeit üblich erreicht werden oder besonders strahlungsresistente Tumore würden sogar endlich empfindlich für eine Bestrahlung. Das Team um Lukas Gerken und Inge Herrmann vom «Particles-Biology Interactions Laboratory» der Empa in St. Gallen und dem «Nanoparticle Systems Engineering Laboratory» der ETH Zürich sucht daher gemeinsam mit Onkologen am Kantonsspital St. Gallen nach Wegen, um Tumorzellen für die Bestrahlung zu sensibilisieren.
    Die Forschenden haben Nanopartikel aus Metalloxiden ins Visier genommen, die als sogenannte Radiosensitizer wirken können. Dem Team ist es nun gelungen, diese Radiosensitizer in grossen Mengen herzustellen und ihre Wirkung genauer zu analysieren. Ihre Ergebnisse veröffentlichten die Forschenden unlängst im Fachmagazin «Chemistry of Materials».

    Im Feuer gereift

    In der Krebsforschung laufen derzeit Studien mit verschiedenen Stoffklassen, um die Bestrahlung von Tumoren effizienter zu machen. Wie genau hierbei Nanopartikel aus Gold oder aus exotischeren Metalloxiden wie Hafniumdioxid wirken, ist noch nicht völlig geklärt. Bekannt ist, dass eine komplexe Reaktionskaskade oxidativen Stress in den Krebszellen ausübt. Auf diese Weise lassen sich möglicherweise die Reparaturmechanismen der bösartigen Zellen überwältigen.
    Damit die Nanopartikel für die klinische Anwendung bereitgestellt werden können, mussten zunächst zwei Hürden überwunden werden: Die Herstellung über konventionelle Nasschemie-Verfahren erschwert die Produktion von Mengen im industriellen Massstab, und es mangelt an vergleichenden Analysen zur Wirksamkeit verschiedener Substanzen.
    Empa-Forscher Gerken ist es nun gelungen, Metalloxid-Radiosensitizer mit einer Methode herzustellen, die sich bestens für die industrielle Anwendung eignet: Er setzte auf die Flammensynthese, um Oxide aus Hafnium, Zirconium und Titan in höchster Qualität zu gewinnen. «Dank der Herstellungsart können – je nach Anlage – sogar mehrere Kilogramm am Tag synthetisiert werden», erklärt Gerken. Für die Laboranalysen an der Empa begnügte sich der Wissenschaftler allerdings mit einigen Gramm.

    Besser als Gold

    Nachdem die Nanopartikel in geeigneten Mengen vorlagen, konnte Lukas Gerken die «Kleinodien» detailliert durchleuchten, etwa mittels Röntgenspektroskopie und Elektronenmikroskopie. Sein Urteil: «Wir können sterile, qualitativ hochwertige Metalloxid-Nanopartikel erzeugen, die für gesunde Körperzellen ungefährlich erscheinen», erklärt der Forscher. Bewiesen hat er dies mit Hilfe von Zellkulturen, die er mit unterschiedlichen Nanopartikel-Suspensionen im Labor behandelte. Die Metalloxide sammelten sich dabei in grossen Mengen innerhalb der Zellen an. Spitzenreiter war dabei Hafniumdioxid: Hier gelangten eine halbe Milliarde Nano-Partikel in jede einzelne Zelle, ohne dabei giftig zu sein. Im Vergleich zu den Metalloxiden machte Nanogold bei gleicher Partikelgrösse einen deutlich schlechteren Schnitt: Etwa 10- bis 30-mal weniger Goldteilchen schafften es ins Zellinnere.
    So ungefährlich die Substanzen zunächst für die gesunden Zellen sind, so kraftvoll entfalten sie ihre Wirkung, wenn sie bei einer Bestrahlung eingesetzt werden. Dies konnte das Team anhand von Krebszelllinien demonstrieren. Wurden die Zellkulturen mit Metalloxiden behandelt und danach mit Röntgenstrahlen beschossen, verstärkte sich der abtötende Effekt deutlich. Hafniumdioxid entpuppte sich als das potenteste Hilfsmittel: Tumorzellen, die mit Hafnium-Partikeln behandelt wurden, konnten schon mit weniger als der halben Strahlendosis beseitigt werden. Diese erste Vergleichstudie zeigte ausserdem, dass Hafniumdioxid sogar viermal besser als Nanogold und Titandioxid wirkt. Gesunde menschlichen Zellen (so genannte Fibroblasten) zeigten hingegen keine negativen Bestrahlungseffekte nach einer Nanopartikel-Behandlung.
    Die Ergebnisse machen Lukas Gerken zuversichtlich: «Wir werden diesen Weg weiterverfolgen, um den Wirkmechanismus der Nanopartikel zu erforschen und ihre Effizienz weiter zu optimieren.» Er hofft, dass seine Studien so die klinische Anwendung von Nanopartikeln bei der Bestrahlungstherapie voranbringen.


    Contact for scientific information:

    Lukas Gerken
    Particles-Biology Interactions, Empa
    Tel. +41 58 765 7387
    lukas.gerken@empa.ch

    Professur Nanopartikuläre Systeme, ETH Zürich
    lgerken@student.ethz.ch

    Prof. Dr. Inge Katrin Herrmann
    Particles-Biology Interactions, Empa
    Tel. +41 58 765 7153
    inge.herrmann@empa.ch

    Professur Nanopartikuläre Systeme, ETH Zürich
    ingeh@ethz.ch


    Original publication:

    Scalable Synthesis of Ultrasmall Metal Oxide Radio-Enhancers Outperforming Gold
    Lukas R.H. Gerken, Anna L. Neuer, Pascal M. Gschwend, Kerda Keevend, Alexander Gogos, Alexandre H.C. Anthis, Leonie Aengenheister, Sotiris E. Pratsinis, Ludwig Plasswilm, and Inge K. Herrmann Chem. Mater. 2021, 33, 9, 3098–3112
    Publication Date:April 23, 2021
    https://doi.org/10.1021/acs.chemmater.0c04565


    More information:

    https://www.empa.ch/web/s604/nanomedizin-fuer-die-strahlentherapie Empa Medienmitteilung


    Images

    Fire and Ice: Empa-Forscher Lukas Gerken stellt Nanopartikel für die Krebstherapie mittels Flammensynthese her. Um die winzigen Metallpartikel sichtbar zu machen, wird das Elektronenmikroskop mit Flüssigstickstoff auf eisige Temperaturen gekühlt.
    Fire and Ice: Empa-Forscher Lukas Gerken stellt Nanopartikel für die Krebstherapie mittels Flammensy ...

    Empa

    Im Zellinnern: Nanopartikel aus Hafniumdioxid (eingefärbt) sammeln sich in den Krebszellen an und können nach Bestrahlung Zellschaden anrichten. (Elektronenmikroskopie, nachkoloriert)
    Im Zellinnern: Nanopartikel aus Hafniumdioxid (eingefärbt) sammeln sich in den Krebszellen an und kö ...

    Empa / ETH Zürich


    Criteria of this press release:
    Journalists
    Biology, Materials sciences, Medicine
    transregional, national
    Research results
    German


     

    Fire and Ice: Empa-Forscher Lukas Gerken stellt Nanopartikel für die Krebstherapie mittels Flammensynthese her. Um die winzigen Metallpartikel sichtbar zu machen, wird das Elektronenmikroskop mit Flüssigstickstoff auf eisige Temperaturen gekühlt.


    For download

    x

    Im Zellinnern: Nanopartikel aus Hafniumdioxid (eingefärbt) sammeln sich in den Krebszellen an und können nach Bestrahlung Zellschaden anrichten. (Elektronenmikroskopie, nachkoloriert)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).