idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/15/2024 16:46

"Optische Fingerabdrücke" auf einem Elektronenstrahl

Dr. Carmen Rotte Kommunikation & Medien
Max-Planck-Institut für Multidisziplinäre Naturwissenschaften

    Die präzise Kontrolle von Elektronenstrahlen in sogenannten Transmissionselektronenmikroskopen (TEM) ermöglicht es, Materialien oder Moleküle auf atomarer Ebene zu untersuchen. Kombiniert mit kurzen Lichtpulsen können diese Geräte auch eingesetzt werden, um dynamische Vorgänge zu untersuchen. Forschende aus Göttingen und der Schweiz haben nun erstmals gezeigt, wie Elektronen komplexe Licht-Zustände in einem mikroskopischen Lichtspeicher in einem TEM unterscheiden können.

    Wie können wir Licht nutzen, um Informationen zu speichern? Oder mithilfe von Licht rasend schnell Daten übertragen? Mit diesen und vielen weiteren Fragen beschäftigt sich das Forschungsfeld der Photonik. Die moderne integrierte Photonik ermöglicht es beispielsweise, Licht in Kanälen auf einem Mikrochip zu führen oder zu manipulieren. Dabei können auch sogenannte nichtlineare optische Prozesse genutzt werden, bei denen für sehr hohe Lichtintensitäten neue Farben oder auch extrem kurze Lichtpulse entstehen. Diese Technologien werden heute bereits in der Telekommunikation, für optische Abstands- und Geschwindigkeitsmessungen oder auch im „Quantencomputing“ eingesetzt.

    In jüngster Zeit entstehen zunehmend neue Schnittstellen zwischen der Photonik und anderen Forschungsgebieten, wie beispielsweise der Elektronenmikroskopie. So können optische Mikrochips seit Kurzem Elektronenstrahlen beeinflussen. Im Gegenzug können Elektronen zum Vermessen von Lichtfeldern genutzt werden. Passiert nämlich ein Elektron ein intensives Lichtfeld, so wird dieses dabei abhängig von seiner Ankunftszeit und der Stärke des Feldes beschleunigt oder abgebremst. Wissenschaftler*innen können dann aus der veränderten Geschwindigkeit des Elektrons direkte Rückschlüsse auf die Eigenschaften des Lichts ziehen.

    Unterschiedliche Lichtzustände untersuchen

    In einer neuen, im Fachmagazin Science veröffentlichten Studie, hat ein Team um Claus Ropers vom Max-Planck-Institut (MPI) für Multidisziplinäre Naturwissenschaften in Göttingen und Tobias Kippenberg von der Eidgenössischen Technischen Hochschule Lausanne (EPFL) jetzt verschiedene nichtlineare optische Prozesse mit einem Elektronenstrahl untersucht. Dafür platzierten sie einen ringförmigen Lichtspeicher, einen sogenannten Mikroresonator, in einem TEM und erzeugten darin Licht mit unterschiedlichen Wellenformen. Anhand der charakteristischen Wechselwirkung mit dem Strahl der Elektronen konnten sie dann die unterschiedlichen Lichtzustände im Detail untersuchen.

    „Wenn wir den Elektronenstrahl so positionieren, dass die Elektronen an den Resonatoren vorbeifliegen, können wir den genauen Einfluss des Lichtfeldes auf die Elektronenenergie messen“, erklärt Jan-Wilke Henke vom MPI. Seine Kollegin Jasmin Kappert ergänzt: „Jede der möglichen Wellenformen des Lichts hinterlässt dabei einen charakteristischen Fingerabdruck im Elektronenspektrum, der uns ermöglicht, die Entstehung der verschiedenen Zustände nachzuverfolgen.“ Die beiden Doktorand*innen haben die Experimente im Labor für ultraschnelle Transmissionselektronenmikroskopie am MPI in Göttingen durchgeführt. Die dafür erforderlichen photonischen Chips entwickelte das Team in Lausanne.

    Lichtpulse mit weniger als ein Zehntel einer Billionstelsekunde Dauer

    Den Forschenden ist es aber nicht nur gelungen, Lichtfelder anhand ihrer Auswirkung auf Elektronen zu charakterisieren: „Wir haben bei unseren Experimenten auch sogenannte Solitonen erzeugt – stabile, ultrakurze Lichtpulse mit weniger als ein Zehntel einer Billionstelsekunde Dauer,“ erzählt der Physiker Yujia Yang von der EPFL. Die Möglichkeit, Solitonen in einem TEM zu erzeugen, erweitere den Einsatz von nichtlinearer Optik und Mikroresonatoren in unerforschte Bereiche, so Tobias Kippenberg. „Die Wechselwirkung zwischen Elektronen und Solitonen könnte unter anderem ultraschnelle Elektronenmikroskopie mit bisher unerreicht hoher Wiederholrate ermöglichen.“

    Max-Planck-Direktor Claus Ropers fügt hinzu: „Unsere Ergebnisse zeigen, dass die Elektronenmikroskopie sich ideal dafür eignet, nichtlineare optische Dynamiken auf der Nanoskala zu untersuchen. Zudem gehen wir davon aus, dass es zukünftig noch vielfältige Anwendungen dieser Technologie sowohl für die räumliche als auch zeitliche Manipulation von Elektronenstrahlen geben wird.“


    Contact for scientific information:

    Prof. Dr. Claus Ropers
    Abteilung Ultraschnelle Dynamik
    Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Göttingen
    Tel.: +49 551 39-39083
    E-Mail: claus.ropers@mpinat.mpg.de


    Original publication:

    Yujia Yang, Jan-Wilke Henke, Arslan S. Raja, F. Jasmin Kappert, Guanhao Huang, Germaine Arend, Zheru Qiu, Armin Feist, Rui Ning Wang, Aleksandr Tusnin, Alexey Tikan, Claus Ropers, Tobias J. Kippenberg: Free-electron interaction with nonlinear optical states in microresonators. Science 383,168-173 (2024).
    https://doi.org/10.1126/science.adk2489


    More information:

    https://www.mpinat.mpg.de/4600801/pr_2401– Original-Pressemitteilung
    https://www.mpinat.mpg.de/de/ropers – Webseite der Abteilung Ultraschnelle Dynamik am Max-Planck-Institut für Multidisziplinäre Naturwissenschaften, Göttingen


    Images

    Jan-Wilke Henke und Jasmin Kappert, die Göttinger Erstautor*innen der neuen Studie, am Transmissionselektronenmikroskop (TEM).
    Jan-Wilke Henke und Jasmin Kappert, die Göttinger Erstautor*innen der neuen Studie, am Transmissions ...
    Irene Böttcher-Gajewski
    Max-Planck-Institut für Multidisziplinäre Naturwissenschaften

    Illustration der Interaktion zwischen dem Elektronenstrahl (grün) und einem im Ringresonator umlaufenden Soliton-Lichtpulse (bunt auf weißem Untergrund). Die Änderungen am Elektronenstrahl geben Auskunft über die Eigenschaften des Lichtpulses.
    Illustration der Interaktion zwischen dem Elektronenstrahl (grün) und einem im Ringresonator umlaufe ...
    Ryan Allen
    Second Bay Studios


    Criteria of this press release:
    Scientists and scholars, Students
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Jan-Wilke Henke und Jasmin Kappert, die Göttinger Erstautor*innen der neuen Studie, am Transmissionselektronenmikroskop (TEM).


    For download

    x

    Illustration der Interaktion zwischen dem Elektronenstrahl (grün) und einem im Ringresonator umlaufenden Soliton-Lichtpulse (bunt auf weißem Untergrund). Die Änderungen am Elektronenstrahl geben Auskunft über die Eigenschaften des Lichtpulses.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).