idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/17/2024 20:00

Peptides on Interstellar Ice

Dr. rer. nat. Marco Körner Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    A research team led by Dr Serge Krasnokutski from the Astrophysics Laboratory at the Max Planck Institute for Astronomy at the University of Jena had already demonstrated that simple peptides can form on cosmic dust particles. However, it was previously assumed that this would not be possible if molecular ice, which covers the dust particle, contains water – which is usually the case. Now, the team, in collaboration with the University of Poitiers, France, has discovered that the presence of water molecules is not a major obstacle for the formation of peptides on such dust particles. The researchers report on their finding in the journal “Science Advances”.

    Chemistry in the Icy Vacuum

    “We have replicated conditions similar to those in outer space in a vacuum chamber, also adding substances that occur in so-called molecular clouds,” explains Krasnokutski. These substances include ammonia, atomic carbon, and carbon monoxide. “Thus, all the chemical elements needed for simple peptides are present,” adds the physicist.

    These raw materials, Krasnokutski describes, initially form chemical precursors to amino acids known as aminoketenes. These then combine to form chains, resulting in polypeptides. “It was previously suspected that the individual aminoketenes would bond to form peptides,” the scientist explains. “However, for this step, the absence of water might be crucial as it could hinder the reaction. At the same time, most interstellar dust particles are covered with water-containing molecular ice,” says Krasnokutski. Hence, the assumption until now has been that if peptides form in space, they do so only to a limited extent.

    Precise Analysis in France

    “The highly precise mass spectrometric analyses now possible at the University of Poitiers, however, showed that the presence of water in the molecular ice slows down the formation of peptides by fifty percent, but they still form,” he explains. “When you consider the time scales on which astronomical processes occur, this slowdown is practically negligible.”

    The question of whether the first biomolecules on our planet are of terrestrial or extraterrestrial origin – or both – will likely remain unresolved for the foreseeable future. However, outer space as a source of our life cannot be ruled out, as this discovery indicates.


    Contact for scientific information:

    Dr Sergiy Krasnokutskiy
    Institute of Solid State Physics of the Friedrich Schiller University Jena
    Helmholtzweg 3
    07743 Jena
    phone: (+49) 03641 / 947306
    email: sergiy.krasnokutskiy@uni-jena.de


    Original publication:

    Serge A. Krasnokutski, Cornelia Jäger, Thomas Henning, Claude Geffroy, Quentin. B. Remaury, Pauline Poinot, "Formation of extraterrestrial peptides and their derivatives", Sciences Advances, 2024, DOI: https://doi.org/10.1126/sciadv.adj7179


    Images

    Dr Serge Krasnokutski, Laboratory Astrophysics and Cluster Physics group at the Max Planck Institute for Astronomy at Friedrich Schiller University Jena, investigates the formation of biomolecules under space conditions with a vacuum chamber.
    Dr Serge Krasnokutski, Laboratory Astrophysics and Cluster Physics group at the Max Planck Institute ...

    image: Jens Meyer / University of Jena


    Criteria of this press release:
    Journalists
    Chemistry, Physics / astronomy
    transregional, national
    Research results
    English


     

    Dr Serge Krasnokutski, Laboratory Astrophysics and Cluster Physics group at the Max Planck Institute for Astronomy at Friedrich Schiller University Jena, investigates the formation of biomolecules under space conditions with a vacuum chamber.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).