idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/06/2024 15:09

Molekulare Dynamik in Echtzeit

Dr. Ute Schönfelder Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    Ein europäisches Forschungsteam hat ein neuartiges spektroskopisches Verfahren entwickelt, mit dem sich ultraschnelle dynamische Prozesse von Elektronen und Schwingungen innerhalb von Molekülen verfolgen lassen – und zwar mit atomarer Auflösung und in Echtzeit. Das experimentelle Team in Barcelona wurde bei der theoretischen Beschreibung der Prozesse durch ein Team der Universität Jena unterstützt. Die Forschenden demonstrieren ihre „Attosekunden-Kernspektroskopie“ am Beispiel des Furan-Moleküls und stellen ihre Methode im Fachmagazin „Nature Photonics“ vor.

    Chemische Reaktionen sind komplexe Mechanismen. Daran beteiligt sind verschiedene dynamische Prozesse der Elektronen und der Atomkerne, die sich wechselseitig beeinflussen. Sehr oft führt eine stark gekoppelte Elektronen- und Kerndynamik zu ultraschnellen strahlungslosen Relaxationsprozessen, die als konische Überschneidungen bekannt sind. Bislang lassen sich solche Prozesse, die von hoher chemischer und biologischer Relevanz sind, jedoch experimentell nur sehr schwer beobachten. Der Grund: Die Bewegungen der Elektronen und der Atomkerne sind nur schwer voneinander zu unterscheiden und laufen auf ultraschnellen Zeitskalen ab, bis runter in den Attosekundenbereich – dem Milliardstel einer Milliardstel Sekunde.

    In einer kürzlich erschienenen Veröffentlichung in Nature Photonics haben das experimentell arbeitende Forschungsteam des Institute of Photonic Sciences (ICFO) in Barcelona sowie das Theorieteam um Dr. Karl Michael Ziems und Prof. Dr. Stefanie Gräfe von der Friedrich-Schiller-Universität Jena nun ein leistungsfähiges Werkzeug vorgestellt, das solche molekularen Dynamiken in Echtzeit erfassen kann. Die Forschenden haben ihre Methode an der Dynamik des Furan-Moleküls in der Gasphase gemessen. Furan ist ein organisches Molekül, das aus Kohlenstoff, Wasserstoff und Sauerstoff besteht, wobei die Atome in einer planaren fünfeckigen Geometrie – als „chemischer Ring“ – angeordnet sind. Furan ist ein prototypisches Beispiel chemischer Ringverbindungen, die in zahlreichen Alltagsprodukten wie Kraftstoffen, Pharmazeutika oder Agrochemikalien vorkommen.

    Wie ein chemischer Ring geöffnet wird und wie er sich wieder schließt

    Dem Team ist es gelungen, Details einer Ringöffnungsdynamik von Furan zeitlich aufzulösen, d. h. die Spaltung der Bindung zwischen einem Kohlenstoffatom und dem Sauerstoffatom, was die Ringstruktur aufbricht. Dafür wurde das Furan-Molekül zunächst durch einen Laserstrahl (Anregungspuls) angeregt. Mit einem darauffolgenden, schwächeren Attosekunden-Puls (Abfragepuls) konnten die Forschenden die durch die Anregung ausgelösten Veränderungen im Molekül beobachten.

    Nach der initialen Lichtanregung konnten die erwarteten Kopplungsregionen zwischen verschiedenen Zuständen (konischen Durchschneidungen) zeitlich lokalisiert werden, indem die Veränderungen des Absorptionsspektrums in Abhängigkeit von der Verzögerung zwischen Anregung und Abfragepuls analysiert wurden. Das Auftreten und Verschwinden von Absorptionsmerkmalen liefern Signaturen für die Änderungen des elektronischen Zustands von Furan.

    So konnten die Forscher zum ersten Mal zeigen, dass eine Quantenüberlagerung zwischen verschiedenen elektronischen Zuständen erzeugt wird – ein elektronisches Wellenpaket – die sich in Form von sogenannten Quantenbeats manifestiert. Auch die eigentliche Ringöffnung über sogenannte dunkle Zustände konnte mit dem experimentellen Aufbau demonstriert werden. Der Übergang des Moleküls von einer geschlossenen zu einer offenen Ringgeometrie spiegelt sich in einem veränderten Absorptionsspektrum wider. Schließlich kehrte das Molekül in seinen elektronischen Grundzustand zurück, dessen Übergang ebenfalls genau zeitaufgelöst wurde.

    Neues Werkzeug zur Analyse schneller Vorgänge in Molekülen

    Das Autorenteam hebt hervor, dass die Attosekunden-Kernspektroskopie nicht nur auf Untersuchungen dieses speziellen Moleküls beschränkt ist, sondern sich als Werkzeug für vielfältige Anwendungen eignet. So könnten damit komplexe Dynamiken analysiert werden, wie sie etwa bei der Wechselwirkung von ultravioletter Strahlung und DNA auftreten. Darüber hinaus sehen die Forschenden die Manipulation von chemischen Reaktionsabläufen als eine der vielversprechendsten Anwendungen für ihre Arbeit.


    Contact for scientific information:

    Prof. Dr. Stefanie Gräfe
    Institut für Physikalische Chemie und Institut für Angewandte Physik der Universität Jena
    Lessingstr. 4, 07743 Jena, Germany
    Tel.: +49-3641-948 330
    E-Mail: s.graefe@uni-jena.de


    Original publication:

    Attosecond core-level absorption spectroscopy reveals the electronic and nuclear dynamics of molecular ring opening, S. Severino, K. M. Ziems, M. Reduzzi, A. Summers, H.-W. Sun, Y.-H. Chien, S. Gräfe & J. Biegert, 2024, Nature Photonics, https://www.nature.com/articles/s41566-024-01436-9


    Images

    Prof. Dr. Stefanie Gräfe von der Universität Jena hat die theoretischen Arbeiten geleitet.
    Prof. Dr. Stefanie Gräfe von der Universität Jena hat die theoretischen Arbeiten geleitet.
    Foto: Jens Meyer/Uni Jena


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Physics / astronomy
    regional
    Research results, Scientific Publications
    German


     

    Prof. Dr. Stefanie Gräfe von der Universität Jena hat die theoretischen Arbeiten geleitet.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).