Biomembranen umhüllen biologische Zellen wie eine Haut. Sie umschließen auch die Organellen, die innerhalb der Zelle wichtige Aufgaben beim Stoffwechsel oder der Zellteilung übernehmen. Wie Biomembranen grundsätzlich aufgebaut sind, ist schon lange bekannt. Auch, dass Wassermoleküle benachbarte Biomembranen auf Abstand halten – sonst könnten diese ihre lebenswichtigen Funktionen nicht erfüllen. Mithilfe von Computersimulationen haben Wissenschaftler der TU München und der Freien Universität Berlin jetzt zwei verschiedene Mechanismen entdeckt, die verhindern, dass benachbarte Membran-Oberflächen zusammenkleben. Ihre Ergebnisse sind im Fachjournal PNAS erschienen.
Biomembranen bestehen aus nebeneinander aufgereihten kettenartigen Fettmolekülen, sogenannten Lipiden. In der wässrigen Umgebung von Zellen organisieren sich die Lipide in einer Doppelschicht. Die fettlöslichen Kettenenden weisen jeweils nach innen, die wasserlöslichen Anteile nach außen. Wenn sich zwei Biomembranen mit ihren wasserlöslichen Oberflächen zu nahe kommen, entsteht ein Wasserdruck. Dieser verhindert, dass sich die Membran-Oberflächen berühren. Zwischen zwei intakten Biomembranen befindet sich somit immer ein wenige Nanometer dünner Wasserfilm. Allerdings war bisher unklar, wie die Wasserabstoßung auf molekularer Ebene funktioniert.
Mithilfe aufwändiger Simulationen haben die Wissenschaftler zwei verschiedene Mechanismen entdeckt, die von der Entfernung zwischen den Membranen abhängen. Sind die Membranen mehr als etwa einen Nanometer voneinander entfernt, spielen die Wassermoleküle die entscheidende Rolle bei der Abstoßung. Da sie sich an den Lipiden beider Membran-Oberflächen gleichzeitig ausrichten müssen, verlassen sie ihre bevorzugte räumliche Anordnung. Sie haben dann eine ähnliche Funktion wie Puffer zwischen zwei Eisenbahnwagons: Sie halten die Membranen auf Distanz. Bei kleineren Abständen beinträchtigen sich die Lipide der gegenüberliegenden Membran-Oberflächen in ihrer Beweglichkeit – und die Abstoßung verstärkt sich.
Die beiden Mechanismen werden schon seit einiger Zeit zur Erklärung der Wasserabstoßung diskutiert. Mit ihren Computersimulationen haben die Wissenschaftler von TUM und Freier Universität jetzt erstmals die Stärke der Wasserabstoßung richtig vorhergesagt, also in Übereinstimmung mit Experimenten. Damit ist die Bedeutung der verschiedenen Mechanismen im Detail aufgeklärt. „Wir konnten den Wasserdruck so genau vorhersagen, weil wir in unseren Rechnungen das chemische Potenzial des Wassers präzise bestimmt haben“, erklärt Dr. Emanuel Schneck aus der Arbeitsgruppe von Professor Roland Netz (vormals TUM), der inzwischen am Institute Laue Langevin (ILL) forscht. „Das chemische Potenzial besagt, wie ‚gern’ sich die Wassermoleküle am jeweiligen Ort aufhalten. Damit wir korrekte Ergebnisse erhalten, muss das Potenzial an Membran-Oberflächen und im Umgebungswasser in der Simulation den gleichen Wert haben.“
Ihre Ergebnisse wollen die Forscher jetzt auf eine Vielzahl weiterer biologischer Oberflächen übertragen und dabei noch deutlich komplexere Computermodelle einsetzen.
Diese Forschungsarbeit wurde von der Deutschen Forschungsgemeinschaft (DFG SFB 765) und vom Bundesministerium für Wirtschaft und Technologie (BMWi) im Rahmen eines Projekts der Allianz Industrie Forschung (AiF) unterstützt.
Originalpublikation:
Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization; Emanuel Schneck, Felix Sedlmeier and Roland R. Netz
http://www.pnas.org/cgi/doi/10.1073/pnas.1205811109
Kontakt:
Dr. Emanuel Schneck
Institut Laue Langevin, Grenoble, Frankreich
Tel. +33 (0)476 207622,
E-Mail: schnecke@ill.fr oder emanuel.schneck@tum.de
Prof. Dr. Roland Netz
Fachbereich Physik der Freien Universität Berlin
Tel.: 030 838-55737
E-Mail: rnetz@physik.fu-berlin.de
www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz/
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/lang/article/30028/
Bei einem Abstand von mehr als ca. 1 Nanometer zwischen zwei Membranen dominiert die Abstoßung durch ...
Bild: Emanuel Schneck
None
Wenn die Membranen weniger als ca. 1 Nanometer voneinander entfernt sind, überwiegt der Einfluss der ...
Bild: Emanuel Schneck
None
Merkmale dieser Pressemitteilung:
Journalisten
Biologie, Chemie
überregional
Forschungsergebnisse
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).