idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.07.2013 12:31

Schneller als ein Atom schwingen kann

Dr. Ute Schönfelder Stabsstelle Kommunikation/Pressestelle
Friedrich-Schiller-Universität Jena

    Physiker der Universität Jena erzeugen hochfrequente Attosekundenblitze für die Grundlagenforschung

    Immer leistungsfähigere Mikroskope und spektroskopische Verfahren erlauben heute den Einblick in immer kleinere Dimensionen der Materie. Um beispielsweise Vorgänge in Molekülen und Atomen beobachten zu können, braucht es nicht nur Technik mit extrem hoher Auflösung. Da diese Prozesse sehr schnell ablaufen, sind zudem extrem kurze Belichtungszeiten notwendig. „Wenn wir die genauen Abläufe chemischer Reaktionen, die Bewegungen von Ladungsträgern oder das Wechselspiel von Licht und Materie in Echtzeit beobachten wollen, brauchen wir Belichtungszeiten im Attosekundenbereich“, weiß Prof. Dr. Jens Limpert von der Friedrich-Schiller-Universität Jena.

    Der Juniorprofessor vom Institut für Angewandte Physik und seine Kollegen haben dafür jetzt entscheidende Grundlagen geschaffen: Gemeinsam mit Partnern des Jenaer Helmholtz-Instituts, des Max-Born Instituts Berlin und des Imperial College London ist es ihnen erstmals gelungen, isolierte Attosekundenpulse mit noch nie dagewesenen Pulsfolgefrequenzen zu erzeugen. Wie das Jenaer Forscherteam im renommierten Fachmagazin „Nature Photonics“ schreibt, erreicht es dank eines neuartigen Ansatzes eine Pulsfrequenz im Megahertz-Bereich – mit fast einer Million Pulse pro Sekunde (DOI: 10.1038/nphoton.2013.131).

    Dabei entspricht die unvorstellbar kurze Zeitspanne einer Attosekunde dem Milliardsten Teil eines Milliardstels einer Sekunde. „Das heißt, eine Attosekunde dauert im Vergleich zu einer Sekunde nur so lang wie eine Sekunde im Vergleich zum Alter des Universums“, veranschaulicht Limpert. Ihre Attosekundenblitze erzeugen die Physiker, indem sie ultrakurze Laserpulse auf das Edelgas Argon fokussieren. Dabei wird die Strahlung des Lasers in den extrem ultravioletten Wellenlängenbereich verschoben.

    Mit bisherigen Lasersystemen konnten jedoch nur wenige tausend Pulse pro Sekunde erzeugt werden. Das mag für den Laien extrem viel klingen – die Physiker konnten damit noch wenig anfangen. „Für die Aufnahme von multidimensionalen Daten wie z. B. hochauflösende Bilder oder sogar Videos von grundlegenden Vorgängen in der Natur werden weitaus höhere Pulswiederholfrequenzen benötigt“, sagt Manuel Krebs, der Erstautor der vorliegenden Studie. Er und seine Kollegen haben einen neuartigen parametrischen Verstärker entwickelt, der mit einem Hochleistungsfaserlaser gepumpt wird. Damit erreichen die Jenaer Physiker erstmals überhaupt Pulsfrequenzen im Megahertz-Bereich. „Das ist eine Steigerung dieses wichtigen Parameters um einen Faktor von 200“, ordnet Limpert den Erfolg des Jenaer Teams ein und macht deutlich: „Damit sind jetzt völlig neuartige Anwendungen im noch jungen Gebiet der Attosekundenphysik möglich.“ Denkbar seien neue Methoden, wie die zeitaufgelöste Fotoelektronen-Spektroskopie oder sogar extreme Zeitraffer-Aufnahmen von mikroskopischen Vorgängen in der Nanotechnologie.

    Original-Publikation:
    Krebs, M. et al. Towards isolated attosecond pulses at megahertz repetition rates. Nature Photonics 7, 555–559 (2013). DOI:10.1038/nphoton.2013.131

    Kontakt:
    Jun.-Prof. Dr. Jens Limpert
    Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
    Albert-Einstein-Straße 15, 07745 Jena
    Tel.: 03641 / 947811
    E-Mail: jens.limpert[at]uni-jena.de


    Weitere Informationen:

    http://www.uni-jena.de


    Bilder

    Doktorand Manuel Krebs ist Erstautor der aktuellen Publikation, in der Physiker der Uni Jena belegen, dass sie isolierte Attosekundenpulse mit einer Pulsfolgefrequenzen im Megahertz-Bereich erzeugen können.
    Doktorand Manuel Krebs ist Erstautor der aktuellen Publikation, in der Physiker der Uni Jena belegen ...
    Foto: Jan-Peter Kasper/FSU
    None

    So entstehen isolierte Attosekundenpulse: Ein Laserpuls (rot) wechselwirkt mit Argonatomen in einem dünnen Gasstrahl und erzeugt dabei einen kurzwelligeren Puls (blau), dessen Dauer im Attosekundenbereich liegt.
    So entstehen isolierte Attosekundenpulse: Ein Laserpuls (rot) wechselwirkt mit Argonatomen in einem ...
    Abb.: IAP/FSU
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Doktorand Manuel Krebs ist Erstautor der aktuellen Publikation, in der Physiker der Uni Jena belegen, dass sie isolierte Attosekundenpulse mit einer Pulsfolgefrequenzen im Megahertz-Bereich erzeugen können.


    Zum Download

    x

    So entstehen isolierte Attosekundenpulse: Ein Laserpuls (rot) wechselwirkt mit Argonatomen in einem dünnen Gasstrahl und erzeugt dabei einen kurzwelligeren Puls (blau), dessen Dauer im Attosekundenbereich liegt.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).