idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.09.2014 19:00

Der verbotenen Seite von Molekülen auf der Spur

Reto Caluori Kommunikation & Marketing
Universität Basel

    Forschern der Universität Basel ist es erstmals gelungen, das «verbotene» Infrarot-Spektrum eines geladenen Moleküls zu beobachten. Solche extrem schwache Spektren eröffnen neue Wege für die hochpräzise Vermessung molekularer Eigenschaften, für die Entwicklung molekularer Uhren und für die Quantentechnologie. Die Ergebnisse wurden in der renommierten Fachzeitschrift «Nature Physics» veröffentlicht.

    Die Spektroskopie, die Wechselwirkung von Materie mit Licht, ist die wohl wichtigste Methode, um die Eigenschaften von Molekülen zu untersuchen. Moleküle können dabei nur Licht bei wohldefinierten Wellenlängen absorbieren, die genau der Differenz zwischen zwei quantenmechanischen Energiezuständen entsprechen. Man spricht dabei von spektroskopischen Übergängen. Aus der Analyse der Wellenlänge und der Intensität der Übergänge lassen sich Informationen über die chemische Struktur und über die molekulare Bewegung wie Drehungen oder Schwingungen gewinnen.

    In bestimmten Fällen ist der Übergang zwischen zwei Energiezuständen jedoch nicht erlaubt, was als «verbotener» Übergang bezeichnet wird. Dieses Verbot ist jedoch nicht kategorisch, sodass verbotene Übergänge mit einer extrem empfindlichen Messmethode trotzdem beobachtet werden können. Die entsprechenden Spektren sind sehr schwach, können aber auch sehr genau vermessen werden. Sie geben Aufschluss über molekulare Eigenschaften mit einer Präzision, die mit erlaubten Spektren nicht erreichbar wäre.

    Präzise Analyse molekularer Eigenschaften

    Die Forschungsgruppe um Prof. Stefan Willitsch vom Departement Chemie der Universität Basel hat im Rahmen des Nationalen Forschungsschwerpunkts «QSIT – Quantenwissenschaften und -technologie» Methoden etabliert, mit denen Moleküle gezielt auf Quantenebene manipuliert und untersucht werden können.

    In der vorliegenden Arbeit wurden dabei einzelne geladene Stickstoffmoleküle (Ionen) in einem wohldefinierten molekularen Energiezustand erzeugt. Diese wurden dann in einer Ultrahochvakuum-Kammer in eine Anordnung von ultrakalten, lasergekühlten Calcium-Ionen, einen sogenannten Coulomb-Kristall, eingebracht. Dadurch kühlten sich die Molekül-Ionen auf wenige tausendstel Grad über dem absoluten Temperaturnullpunkt ab und lokalisierten sich im Raum. In dieser isolierten, kalten Umgebung konnten die Moleküle über lange Zeiträume störungsfrei untersucht werden. Auf diese Weise gelang es den Forschern, mit einem intensiven Laser verbotene Übergänge im Infrarotbereich anzuregen und zu beobachten.

    Perspektive für neue Anwendungen

    Die vorgestellte Methode weist den Weg zu neuen Anwendungen wie zum Beispiel der hochgenauen Vermessung molekularer Eigenschaften, der Entwicklung extrem präziserer Uhren auf Basis einzelner Moleküle oder der Quanteninformationsverarbeitung mit Molekülen. Sie eröffnet auch Möglichkeiten, fundamentale Fragestellungen mithilfe spektroskopischer Präzisionsmessungen an Molekülen aufzugreifen, die bisher eine Domäne der Hochenergiephysik waren, wie zum Beispiel die Frage, ob die Naturkonstanten tatsächlich konstant sind.

    Originalbeitrag
    Matthias Germann, Xin Tong, Stefan Willitsch
    Observation of electric-dipole-forbidden infrared transitions in cold molecular ions
    Nature Physics, published online 21 September 2014 | doi: 10.1038/nphys3085

    Weitere Auskünfte
    Prof. Dr. Stefan Willitsch, Universität Basel, Departement Chemie, Tel. +41 61 267 38 30, E-Mail: stefan.willitsch@unibas.ch


    Bilder

    Simulation der räumlichen Verteilung von einzelnen Stickstoff-Ionen (grün) im Inneren eines Coulomb-Kristalls von lasergekühlten Calcium-Ionen (blau).
    Simulation der räumlichen Verteilung von einzelnen Stickstoff-Ionen (grün) im Inneren eines Coulomb- ...
    Illustration: Universität Basel, Departement Chemie
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Biologie, Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Simulation der räumlichen Verteilung von einzelnen Stickstoff-Ionen (grün) im Inneren eines Coulomb-Kristalls von lasergekühlten Calcium-Ionen (blau).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).