idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.07.2016 20:05

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

Mag. Gudrun Pichler Presse + Kommunikation
Karl-Franzens-Universität Graz

    Lichens have long been a classic example of symbiosis. Now, that dualistic relationship between an alga and a fungus is being challenged. Together with colleagues from the USA and Sweden, researchers of the University of Graz have shown that some of the world's most common lichen species are actually composed of not one but two fungi. These findings will be the cover story in the July 29th issue of the journal Science.

    Lichens, a mutually helpful relationship between an alga and a fungus, have long been a classic example of symbiosis. Now, that well-known dualistic relationship is being challenged. Together with colleagues from the USA and Sweden, researchers of the University of Graz have shown that some of the world's most common lichen species are actually composed of not one but two fungi. These findings are published online on July 22nd and will be the cover story in the July 29th issue of the journal Science.

    Thanks to recent advances in genomic sequencing, Toby Spribille, the project leader and a postdoctoral researcher working with Helmut Mayrhofer at the Institute of Plant Sciences in Graz, showed that many lichens contain a previously unknown second fungus, identified as a form of yeast. He discovered the new fungus when he set out to answer why one of two closely related lichen species, common in the western United States, contains substances toxic to mammals while the other does not.

    Using short pieces of "barcode" DNA they obtained from their genome sequencing, the researchers began to check other lichens from all over the world for the presence of the yeast. It turned out that the second fungus was everywhere: the research team found it in common lichens from Antarctica to Japan, and from South America to the highlands of Ethiopia. The fungus had been overlooked by over one hundred years of microscopic studies. Spribille teamed up with researchers in Sweden and the Microscopy Core Facility at the University of Graz Institute for Molecular Biosciences to make the yeasts visible using fluorescent labeling techniques.
    "This is a pretty fundamental shake-up of what we thought we knew about the lichen symbiosis," says Spribille. "It's easy to see how it was overlooked. But now it really does force a reassessment of basic assumptions about how lichens are formed and who does what in the symbiosis."

    The research team now hope to gain a better understanding of the interactions of the two fungi as a way to understand how symbiosis works. "Basically in symbiosis two organisms get past the urge to compete or repel each other and together form something that wasn't there before", Spribille explains. "Figuring out how they do this could give us fundamental insight into how species cooperate at a cellular level".

    The Institute of Plant Sciences of the University of Graz is a leading centre in the lichen symbiosis research worldwide. The analyses were realised together with the Institute of Molecular Biosciences and were financed by the Austrian Science Fund and through collaboration with the University of Montana, Uppsala University and Purdue University.

    Publication:
    Toby Spribille, Veera Tuovinen, Philipp Resl, Dan Vanderpool, Heimo Wolinski, M. Catherine Aime, Kevin Schneider, Edith Stabentheiner, Merje Toome-Heller, Göran Thor, Helmut Mayrhofer, Hanna Johannesson, John P. McCutcheon: „Basidiomycete yeasts in the cortex of ascomycete macrolichens" Science (online July 22, 2016).

    Contact:
    Dr. Toby Spribille
    Institute of Plant Sciences of the University of Graz
    Tel.: +43 (0) 660/839 2918
    E-Mail: toby.spribille@mso.umt.edu


    Bilder

    The lichen Vulpicida canadensis is common on tree barks in Northern America. As scientists have found out, it consists of an alga and two fungi.
    The lichen Vulpicida canadensis is common on tree barks in Northern America. As scientists have foun ...
    Tim Wheeler/timwheelerphotography.com
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    The lichen Vulpicida canadensis is common on tree barks in Northern America. As scientists have found out, it consists of an alga and two fungi.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).