idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
21.03.2017 11:15

Wie Metalle mit dem Erbgut wechselwirken

Stephan Brodicky Öffentlichkeitsarbeit
Universität Wien

    Seit einigen Jahren werden Metallverbindungen erfolgreich als Chemotherapeutika zur Bekämpfung bestimmter Krebsarten eingesetzt – am häufigsten Platinverbindungen. Bei der Suche nach neuen, wirksameren Antitumormitteln steht oft das fehlende Verständnis der zugrundeliegenden molekularen Mechanismen in diesen Metallverbindungen im Wege. Ein internationales Forschungsteam um Leticia González von der Universität Wien hat nun ein Verfahren entwickelt um die Wechselwirkung von Metallverbindungen mit dem zellulären Erbgut zu beobachten.

    Im Kampf gegen Krebs werden jedes Jahr tausende von chemischen Verbindungen entwickelt und auf ihre potenzielle Wirksamkeit gegen Tumore untersucht. Findet man eine solche Wirksamkeit, dauert es meistens jedoch viele Jahre, bis ein neuer Wirkstoff als tatsächliches Medikament zugelassen wird und bei PatientInnen eingesetzt werden kann. Der Prozess der Zulassung dauert unter anderem deswegen so lange, weil es in der Regel sehr schwierig ist, den Weg eines Wirkstoffs innerhalb der menschlichen Zellen zu verfolgen. Infolgedessen lassen sich mögliche Nebenwirkungen nur schwer vorhersagen und müssen durch aufwändige Experimente erforscht werden.

    Die Arbeitsgruppe von Leticia González von der Fakultät für Chemie der Universität Wien hat nun, in Zusammenarbeit mit der Forschungsgruppe von Jacinto Sá von der Universität Uppsala sowie weiteren internationalen Partnern, ein Protokoll entwickelt, mit dem sich die Wechselwirkung metallhaltiger Medikamente mit Biomolekülen innerhalb eines Organismus mit hoher Genauigkeit verfolgen lässt. "In einem ersten Schritt haben wir mit Hilfe speziell erzeugter Röntgenstrahlen jenen Ort bestimmt, an dem das Medikament innerhalb der Zelle andockt", erklärt González. In einem zweiten Schritt haben die ForscherInnen mittels aufwändiger Computersimulationen, welche teilweise am Supercomputer "Vienna Scientific Cluster" durchgeführt wurden, den Grund für die Bevorzugung dieses bestimmten Ortes aufgeklärt.

    Den WissenschafterInnen ist es bereits gelungen, dieses Protokoll erstmals bei einem Medikament anzuwenden, dessen Antitumorwirkung bekannt, der genaue Wirkmechanismus aber noch nicht geklärt ist. Von der Verbindung "Pt103" aus der Familie der platinhaltigen Wirkstoffe ist bereits aus vorangegangenen Studien eine Antitumorwirkung bekannt. Bisher vermuteten ForscherInnen, dass die Substanz mit dem Erbgut der Zelle wechselwirkt und dadurch die Weitergabe des genetischen Codes während der Zellteilung stört. "Wir konnten zeigen, dass der Wirkstoff an eine ganz spezielle, für uns unerwartete Stelle andockt und gleichzeitig klären, warum genau diese spezifischen Stellen angegriffen werden", so Juan J. Nogueira, Postdoc in der Gruppe von González und Co-Autor der Studie. Dank dieser Erkenntnis lässt sich die Funktionalität der Chemotherapeutika besser verstehen und kann zur Entwicklung neuer, effizienterer Wirkstoffe beitragen.

    Publikation in "Journal of Physical Chemistry Letters"

    "Direct Determination of Metal Complexes Interaction with DNA by Atomic Telemetry and Multiscale Molecular Dynamics." Joanna Czapla-Masztafiak, Juan J. Nogueira, Ewelina Lipiec, Wojciech M. Kwiatek, Bayden R. Wood, Glen B. Deacon, Yves Kayser, Daniel L. A. Fernandes, Mariia V. Pavliuk, Jakub Szlachetko, Leticia González, and Jacinto Sá
    The Journal of Physical Chemistry Letters 2017, 8, 805-811.
    DOI: 10.1021/acs.jpclett.7b00070


    Bilder

    Computersimulation des Angriffs von Pt103 an den DNA-Doppelhelix.
    Computersimulation des Angriffs von Pt103 an den DNA-Doppelhelix.
    Copyright: Juan J. Nogueira, Universität Wien
    None

    In der Zelle angekommen, bindet der Wirkstoff Pt103 bevorzugt an die Nukleobase Adenin, einem der Bausteine des Erbguts.
    In der Zelle angekommen, bindet der Wirkstoff Pt103 bevorzugt an die Nukleobase Adenin, einem der Ba ...
    Copyright: Juan J. Nogueira, Universität Wien
    None


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Ernährung / Gesundheit / Pflege, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Computersimulation des Angriffs von Pt103 an den DNA-Doppelhelix.


    Zum Download

    x

    In der Zelle angekommen, bindet der Wirkstoff Pt103 bevorzugt an die Nukleobase Adenin, einem der Bausteine des Erbguts.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).