idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.05.2018 11:29

Research team uncovers mechanism of action for a class of bacterial toxins: Deadly duet

Dr. Ulrich Marsch Corporate Communications Center
Technische Universität München

    Pore-forming toxins are common bacterial poisons. They attack organisms by opening holes in cell membranes. A team of scientists at the Technical University of Munich (TUM) has now unraveled the mechanism of action for one of these toxins. The findings could help combat associated diseases and protect plants from damage.

    Pore-forming toxins are bacterial poisons that destroy cells by creating holes in the cell membranes. Many bacterial pathogens produce such toxins, including, for example, some strains of the intestinal bacterium Escherichia coli as well as Yersinia enterolitica, a pathogen related to the plague. With the help of their toxins they attack all kinds of organisms – from plants to insects, and even humans.

    Scientists all over the world are trying to understand just how these toxins produce the fatal holes in cell membranes in the hope of one day inhibiting the pathogenic, pore-forming poisons.

    Now an interdisciplinary team from the Technical University of Munich has managed to elucidate the mode of action of a subspecies of the toxin class in which two components interact to develop the deadly effect.

    Two partners with lethal impact

    Combining crystallographic and cryo-electron microscopy methods, Bastian Bräuning and Professor Michael Groll from the Department of Biochemistry, in collaboration with Eva Bertosin and Professor Hendrik Dietz from the Department of Experimental Biophysics, managed to shed light upon the precise molecular structures of the soluble individual components, as well as the pore complex.

    "We determined that only one of the two components is able to bind to the membrane. In a second step it recruits the other component and the base domains of two proteins together form the basic pore unit," explains Bastian Bräuning. "This is a new kind of mechanism from which we can obtain much useful insight."

    The structure of the resulting hole in the cell membrane resembles a crown, whose teeth comprise 40 subunits of the two interacting partners.

    One mechanism – myriad potential applications

    The team of researchers lead by Bräuning and Groll investigated the interaction of the two partner proteins in the toxins of Yersinia enterolitica and Photorhabdus luminescens, a bacterium that lives in nematodes: together, they attack susceptible insect hosts. The latter is thus interesting as an insecticide.

    The new insight moves the development of substances that inhibit the interaction of the two components, and thus prevent the formation of pores, into the realm of the conceivable.

    "Our combination of crystallography and cryo-electron microscopy was key to understanding the necessity of the two-component construction of the toxin from a biochemical perspective," explains Professor Michael Groll. "This insight will also help us understand more complex variants in the future, for example those in which three components work together."

    Publication:

    Bastian Bräuning, Eva Bertosin, Florian Praetorius, Christian Ihling, Alexandra Schatt, Agnes Adler, Klaus Richter, Andrea Sinz, Hendrik Dietz and Michael Groll
    Structure and mechanism of the two-component α-helical pore-forming toxin YaxAB
    Nature Communications, vol. 9, 1806 (2018) – DOI: 10.1038/s41467-018-04139-2
    Link: https://www.nature.com/articles/s41467-018-04139-2

    Further information:

    The work is the result of close a cooperation between the professors of Biochemistry and Biophysics at the Technical University of Munich. Both working groups are part of the Cluster of Excellence Center for Integrated Protein Science Munich (CIPSM). The results were validated by the Department of Pharmaceutical Chemistry and Bioanalytics at the Institute of Pharmacy of the Martin-Luther University Halle-Wittenberg. The X-ray structure data were collected at the synchrotron light source of the Paul Scherrer Institute (Villigen, Switzerland).

    Contact:

    Prof. Michael Groll
    Technical University of Munich
    Chair of Biochemistry
    Tel.: +49 89 289 13361
    michael.groll@tum.de


    Weitere Informationen:

    https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34629/ Link to the press release


    Bilder

    Single subunits of YaxA (blue) and YaxB (purple) and a pore built up from these subunits.
    Single subunits of YaxA (blue) and YaxB (purple) and a pore built up from these subunits.
    Image: Bastian Bräuning / TUM
    None


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler, jedermann
    Biologie, Chemie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Single subunits of YaxA (blue) and YaxB (purple) and a pore built up from these subunits.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).