idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.12.2018 18:12

Plant cells inherit knowledge of where’s up and where’s down from mother cell

Dr. Elisabeth Guggenberger Communications and Events
Institute of Science and Technology Austria

    At cell division, mother cell passes polarity information on to daughter cells - Study published in Nature Plants

    Knowing which way is up and which way is down is important for all living beings. For plants, which grow roots into the soil and flowers above ground, getting this polarization wrong would cause a whole host of problems. In plants, polarization of the entire organism depends on every single cell being polarized. Cell division, however, disrupts polarization. How polarity is reestablished was unknown – until now. Researchers at the Institute of Science and Technology Austria (IST Austria) have solved one piece of the puzzle: They found that plant cells inherit the knowledge of where is up and where’s down from their mother cell. The study led by Jiří Friml, Professor at the Institute of Science and Technology Austria (IST Austria), with first author Matouš Glanc, PhD student in the Friml group, and Matyáš Fendrych, previously a postdoc in the Friml group and now Assistant Professor at Charles University in Prague, is published today in Nature Plants.

    The directional transport of the hormone auxin sets up polarization in plants, but this transport in turn depends on the polar distribution of PIN auxin transporters in each cell. This means that every single cell has to be polarly organized for the plant to distinguish up from down. Cell division, however, sets a challenge: At each division, trafficking of polar membrane proteins, such as PIN auxin transporters, is redirected to both newly formed membranes. Therefore, the PIN auxin transporter polarity is lost in one of the daughter cells after each division. How correct polarity is set up again was unknown. Using a new transgenic Arabidopsis plant line, in which fluorescent PIN auxin transporters can be followed exclusively in dividing cells, the researchers followed in real time what happens to PIN proteins and their polarity during cell division.

    What they found was surprising, says first author Matouš Glanc. “We thought that cells would need to communicate with their neighbors to correctly re-establish polarity. So we first looked for a signal that would be sent between cells. But we found no such thing. Instead, we found that polarity is communicated by the mother cell.” Exactly how mother cells ‘tell’ their daughter cells where up and down are is not yet known, Glanc adds. “We know that polarity information is not conveyed by signaling from neighbors, but is inherited from the mother cell – we are still trying to understand how.”

    The researchers also found that endocytosis, which removes proteins from the cell surface, is crucial for this polarity re-establishment. Previously, it was thought that PIN auxin transporters that end up on the “wrong” cell side after division get removed by endocytosis and shuttled to the correct side. In the paper, the researchers show that instead of being ferried around, the wrongly placed transporters are endocytosed and destroyed. New PIN transporters are made and inserted in the correct side of the cell membrane.

    A group of kinases, PINOID and its homologues WAG1 and WAG2, modify PIN transporters through a chemical reaction called phosphorylation, and are also crucial for determining their polarity. Plants in which all three kinases are no longer functional are unable to re-establish polarity after cell division. In these mutants, we see what happens when plants get polarity wrong: the roots don’t grow down into the soil along gravity, but wave and turn instead.

    While the study has provided some crucial answers as to how polarity is re-established, more questions remain open, says Glanc. “We have identified endocytosis und phosphorylation as key steps in polarity establishment, and we have shown that polarity is inherited from the mother. But we still need to find the nature of the inherited information. It is something inherent to the cells, but what protein, lipid or sugar is involved remains to be seen.”

    About IST Austria
    The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at


    Wissenschaftliche Ansprechpartner:

    Jiri Friml
    Institute of Science and Technology Austria (IST Austria)
    E-mail: jiri.friml@ist.ac.at


    Originalpublikation:

    Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division
    Matouš Glanc, Matyáš Fendrych & Jiří Friml
    https://www.nature.com/articles/s41477-018-0318-3


    Weitere Informationen:

    https://ist.ac.at/research/research-groups/friml-group/


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Biologie
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).